Question. On considère le programme :

```
# a et b sont deux entiers >=0
while a>0:
    if a<b:
        (a,b) = (2*a,b-a)
    else:
        (a,b) = (a-b,2*b)
print(a,b)</pre>
```

- (a) Pour quelles valeurs initiales de *a* et *b* (entiers positifs) la boucle *while* se termine-t-elle?
- (b) Dans le cas où la boucle *while* se termine, déterminer le nombre de fois où elle est répétée (en fonction de *a* et *b*).
- (c) Dans le cas où la boucle *while* se termine, quel est le résultat affiché à la fin?
- (d) Établir que soit la boucle *while* se termine, soit le couple (*a*, *b*) reprend périodiquement les mêmes valeurs à partir d'un certain rang.
- (e) Dans le cas où la boucle while ne se termine pas, quelle est la période?

Réponse. **Valeurs particulières.** Il peut être intéressant d'étudier le comportement du programme sur certaines valeurs particulières de départ.

- Si a = 0, alors quel que soit b, la boucle *while* s'arrête immédiatement.
- Si b = 0, et a > 0, alors la boucle *while* remplace (a, b) = (a, 0) par (a b, 2b) = (a, 0). Le couple (a, b) ne change jamais, la boucle *while* ne s'arrête pas.

Première remarque fondamentale. Dans la boucle, (*a*, *b*) est transformé :

- Soit en (a',b') = (2a,b-a) lorsque b > a, on a alors $a' \ge 0$ et $b' \ge 0$;
- Soit en (a', b') = (a b, 2b) lorsque $b \le a$, on a de même $a' \ge 0$ et $b' \ge 0$.

Les quantités a et b restent donc toujours positives (et entières) au cours de l'exécution du programme.

Pour préciser les notations. Les variables utilisées dans le programme s'appellent a et b mais elles prennent différentes valeurs au cours de l'exécution de ce programme. Pour préciser les choses, on peut définir la suite $((a_n,b_n))_{n\in\mathbb{N}}$ des valeurs prises par le couple (a,b) au cours du programme par récurrence en posant :

$$(a_0,b_0) = (a,b) \quad \text{(valeurs initiales)}$$

$$\forall n \in \mathbb{N}, \ (a_{n+1},b_{n+1}) = (2a_n,b_n-a_n) \quad \text{si} \quad a_n < b_n$$

$$= (a_n-b_n,2b_n) \quad \text{sinon}$$

Ainsi, a_n et b_n sont les valeurs contenues dans les variables a et b après n exécutions de la boucle while. On peut noter que si $a_n = 0$, alors :

- Soit $b_n > 0$ et dans ce cas, $(a_{n+1}, b_{n+1}) = (2a_n, b_n a_n) = (0, b_n)$;
- Soit $b_n = 0$ et dans ce cas, $(a_{n+1}, b_{n+1}) = (a_n b_n, 2b_n) = (0, 0)$.

Ainsi, à partir du moment où $a_n = 0$, la suite $((a_n, b_n))$ est constante. Comme ceci correspond au cas où la boucle *while* s'arrête, on aurait pu aussi choisir d'arêter là la construction de la suite. On a le résultat suivant : la boucle *while* s'arrête si, et seulement si, il existe un entier $n \in \mathbb{N}$ tel que $a_n = 0$.

Deuxième remarque fondamentale. On remarque que dans tous les cas, on a :

$$a_{n+1} + b_{n+1} = a_n + b_n$$

Autrement dit, la quantité a+b reste constante tout au long de la boucle *while*. On pose c=a+b. Ceci permet de répondre à une question : si la boucle *while* s'arrête, alors au moment où l'instruction

print est effectuée on a a = 0 et donc b = c. Lorsque le programme affiche un résultat, il affiche (0, c) où c est la somme des valeurs contenues au départ dans les variables a et b.

Autre conséquence. Comme a et b restent positifs et a+b=c, on a à tout moment $0 \le a \le c$ et $0 \le b \le c$. En particulier, a et b ne peuvent prendre qu'un nombre fini de valeurs.

Suite des valeurs prises par (a,b). La suite $((a_n,b_n))$ est à valeurs dans $E=[0,c]^2$, cet ensemble est fini. L'ensemble des indices de la suite est infini donc il existe nécessairement des entiers $n,m \in \mathbb{N}$ tels que n < m et $(a_n,b_n)=(a_m,b_m)$. Dit autrement, l'application

$$f: \mathbb{N} \to E$$

$$n \mapsto (a_n, b_n)$$

ne peut pas être injective puisque l'ensemble de départ est infini et l'ensemble d'arrivée est fini. À l'indice m, la suite est donc revenue dans le même état que celui où elle était à l'indice n et elle va donc reprendre les mêmes valeurs. La suite $((a_n,b_n))$ est donc périodique à partir de l'entier n. Ceci montre que soit la boucle while se termine (s'il existe n tel que $a_n=0$), soit les variables a et b reprennent périodiquement les mêmes valeurs à partir d'un certain moment.

À partir de maintenant, on suppose que les valeurs de a et b au départ sont strictement positives. **Reformulation du programme.** On note que b=c-a. La condition a < b est donc équivalente à a < c-a autrement dit 2a < c. Dans ce cas, la nouvelle valeur de a est 2a. Dans le cas contraire, la nouvelle valeur de a est a-b=a-(c-a)=2a-c. On peut donc aussi bien écrire le code sous la forme :

```
# a et b sont deux entiers >=0
c = a+b
while a>0:
    if 2*a<c:
        a = 2*a
    else:
        a = 2*a-c
b = c-a
print(a,b)</pre>
```

Reformulation de la suite des valeurs prises. De même, il n'est pas utile de considérer la suite $((a_n, b_n))$ puisqu'il suffit de connaître les valeurs de a_n . On peut donc considérer la suite (a_n) définie par récurrence en posant :

$$a_0 = a$$
 (valeur de départ) $\forall n \in \mathbb{N}, \ a_{n+1} = 2a_n \quad \text{si } 2a_n < c$ $= 2a_n - c \quad \text{si } 2a_n \geqslant c$

Ou encore, en utilisant les notations PYTHON:

$$a_0=a$$
 (valeur de départ) $\forall n \in \mathbb{N}, \ a_{n+1}=2a_n\%c$

Condition de terminaison de la boucle. L'algorithme consiste donc à faire des multiplications par 2 successives à partir de la valeur de a initiale et à prendre le reste de la division euclidienne par c. Ainsi, on a $a_n = 2^n a \% c$ après n répétitions de la boucle, $n \ge 1$. La boucle se termine lorsqu'il existe un entier $n \ge 1$ tel que $a_n = 0$, autrement dit lorsque c est un diviseur de $2^n a$. La condition de terminaison est alors : il existe un entier $n \ge 1$ tel que $c \mid 2^n a$. Le nombre de fois où la boucle est répétée est alors n, plus petit entier naturel non nul tel que $c \mid 2^n a$.

Justification de $a_n = 2^n a\%c$ pour $n \ge 1$. On le démontre par récurrence. Pour n = 1, on a déjà noté que $a_1 = 2a\%c$ donc le résultat est vrai. Soit $n \ge 1$ et supposons que $a_n = 2^n a\%c$. On écrit cette division euclidienne :

$$2^n a = qc + a_n$$

avec $q \in \mathbb{N}$ et $a_n \in [0, c-1]$. On multiplie par 2 :

$$2^{n+1}a = 2ac + 2a_n$$

On a alors deux cas:

- Soit $2a_n < c$, dans ce cas $a_{a+1} = 2a_n$ est bien le reste dans la division euclidienne de $2^{n+1}a$ par c:
- Soit $2a_n \ge c$, on écrit alors :

$$2^{n+1}a = (2q+1)c + 2a_n - c$$

et $a_{n+1} = 2a_n - c$ est le reste dans la division euclidienne de $2^{n+1}a$ par c.

Dans tous les cas, $a_{n+1} = 2^{n+1}a\%c$.

Étude de la période. Supposons que la boucle *while* ne se termine pas, la suite (a_n) est alors périodique à partir d'un certain rang. Il existe alors un entier p et un entier p tel que $a_n = a_{n+p}$. On a alors :

$$2^n a\%c = 2^{n+p} a\%c$$

Autrement dit $2^n a(2^p - 1)\%c = 0$. L'entier p est donc tel que $c \mid 2^n a(2^p - 1)$.

Comment tester ce code avec Python? Pour pouvoir tester avec différentes valeurs de a et b, on préfère définir une fonction :

```
def test(a,b):
    while a>0:
        if a<b:
            (a,b) = (2*a,b-a)
        else:
            (a,b) = (a-b,2*b)
    print(a,b)</pre>
```

Le problème c'est que pour certaines valeurs de a et b, la fonction **test (a,b)** ne s'arrêtera pas. Une première méthode est d'ajouter à la boucle while un compteur pour limiter arbitrairement le nombre d'itérations effectuées.

```
def test(a,b):
    n = 0
    a0 = a
    b0 = b
    while a>0 and n<1000:
        if a < b:
             (a,b) = (2*a,b-a)
        else:
             (a,b) = (a-b, 2*b)
        n = n + 1
    if a==0:
        print(f"Si au début a={a0}, b={b0} alors la boucle s'arrête et à la fi
    else:
        print(f"Si au début a={a0}, b={b0} alors la boucle semble ne pas s'arr
for a in range(1,5): # Le cas a=0 est évident
    for b in range (0,5):
        test(a,b)
```

```
Si au début a=1, b=0 alors la boucle semble ne pas s'arrêter
Si au début a=1, b=1 alors la boucle s'arrête et à la fin a=0 et b=2
Si au début a=1, b=2 alors la boucle semble ne pas s'arrêter
Si au début a=1, b=3 alors la boucle s'arrête et à la fin a=0 et b=4
Si au début a=1, b=4 alors la boucle semble ne pas s'arrêter
Si au début a=2, b=0 alors la boucle semble ne pas s'arrêter
Si au début a=2, b=1 alors la boucle semble ne pas s'arrêter
Si au début a=2, b=2 alors la boucle s'arrête et à la fin a=0 et b=4
Si au début a=2, b=3 alors la boucle semble ne pas s'arrêter
Si au début a=2, b=4 alors la boucle semble ne pas s'arrêter
Si au début a=3, b=0 alors la boucle semble ne pas s'arrêter
Si au début a=3, b=1 alors la boucle s'arrête et à la fin a=0 et b=4
Si au début a=3, b=2 alors la boucle semble ne pas s'arrêter
Si au début a=3, b=3 alors la boucle s'arrête et à la fin a=0 et b=6
Si au début a=3, b=4 alors la boucle semble ne pas s'arrêter
Si au début a=4, b=0 alors la boucle semble ne pas s'arrêter
Si au début a=4, b=1 alors la boucle semble ne pas s'arrêter
Si au début a=4, b=2 alors la boucle semble ne pas s'arrêter
Si au début a=4, b=3 alors la boucle semble ne pas s'arrêter
Si au début a=4, b=4 alors la boucle s'arrête et à la fin a=0 et b=8
```

On peut procéder rigoureusement une fois qu'il est admis qu'il n'y a que deux possibilités : soit la boucle while s'arrête, soit le couple (a,b) reprendra deux fois la même valeur. Il suffit alors de retenir la liste L des valeurs prises par (a,b) et si la nouvelle valeur calculée est déjà dans L c'est que la boucle ne se termine pas.

```
def test(a,b):
     L = []
     a0 = a
     b0 = b
     while a>0 and (a,b) not in L:
          L.append((a,b))
          if a < b:</pre>
              (a,b) = (2*a,b-a)
          else:
              (a,b) = (a-b, 2*b)
      if a==0:
          print(f"Si au début a={a0}, b={b0} alors la boucle s'arrête et à la fi
     else:
          print(f"Si au début a={a0}, b={b0} alors la boucle ne s'arrête pas")
 for a in range(1,5): # Le cas a=0 est évident
      for b in range (0,5):
          test(a,b)
Si au début a=1, b=0 alors la boucle ne s'arrête pas
Si au début a=1, b=1 alors la boucle s'arrête et à la fin a=0 et b=2
Si au début a=1, b=2 alors la boucle ne s'arrête pas
Si au début a=1, b=3 alors la boucle s'arrête et à la fin a=0 et b=4
Si au début a=1, b=4 alors la boucle ne s'arrête pas
Si au début a=2, b=0 alors la boucle ne s'arrête pas
Si au début a=2, b=1 alors la boucle ne s'arrête pas
Si au début a=2, b=2 alors la boucle s'arrête et à la fin a=0 et b=4
Si au début a=2, b=3 alors la boucle ne s'arrête pas
Si au début a=2, b=4 alors la boucle ne s'arrête pas
Si au début a=3, b=0 alors la boucle ne s'arrête pas
Si au début a=3, b=1 alors la boucle s'arrête et à la fin a=0 et b=4
Si au début a=3, b=2 alors la boucle ne s'arrête pas
Si au début a=3, b=3 alors la boucle s'arrête et à la fin a=0 et b=6
Si au début a=3, b=4 alors la boucle ne s'arrête pas
Si au début a=4, b=0 alors la boucle ne s'arrête pas
Si au début a=4, b=1 alors la boucle ne s'arrête pas
Si au début a=4, b=2 alors la boucle ne s'arrête pas
Si au début a=4, b=3 alors la boucle ne s'arrête pas
```

Si au début a=4, b=4 alors la boucle s'arrête et à la fin a=0 et b=8