

TD 20 : Endomorphismes des espaces euclidiens

Dans tous les exercices, E est un espace euclidien de dimension n et l'espace \mathbb{R}^n est muni de sa structure euclidienne canonique.

Le théorème spectral

Exercice 1 (*Résultat préliminaire au théorème spectral*). Soit $M \in \mathcal{S}_n(\mathbb{R})$. On considère $\lambda \in \mathbb{C}$ une valeur propre de M et $z \in \mathbb{C}^n$ un vecteur propre pour M associé à λ . On pose :

$$z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$$
 et $\overline{z} = \begin{pmatrix} \overline{z_1} \\ \vdots \\ \overline{z_n} \end{pmatrix}$

- (a) Calculer de deux manières différentes $(M\overline{z})^{\top}z$ et en déduire que $\overline{\lambda} = \lambda$.
- (b) En déduite que $\operatorname{Sp}_{\mathbb{R}}(M) \neq \emptyset$.

Exercice 2. Soit $n \ge 3$. On considère la matrice $A \in \mathcal{M}_n(\mathbb{R})$ dont les coefficients de la première ligne et la première colonne sont tous égaux à 1 et les autres coefficients sont nuls. Justifier que A est diagonalisable. Démontrer que 0 est valeur propre de A et multiplicité n-2. Calculer tr A et $\operatorname{tr}(A^2)$ et en déduire les autres valeurs propres de A.

Exercice 3 (*Oral Mines-Ponts, PC, 2005*). Déterminer les matrices $A \in \mathcal{S}_n(\mathbb{R})$ qui vérifient $A^3 = I_n$. Réponse. Supposons que $A \in \mathcal{S}_n(\mathbb{R})$ et $A^3 = I_n$. Alors A est diagonalisable et $X^3 - 1$ est annulateur de A. Soit $\lambda \in \mathbb{R}$ une valeur propre de A, on a alors $\lambda^3 = 1$ donc $\lambda = 1$ (la fonction $x \mapsto x^3$ est une bijection de \mathbb{R} dans \mathbb{R}). Par conséquent $Sp(A) = \{1\}$. Il existe une matrice $P \in GL_n(\mathbb{R})$ telle que $D = P^{-1}AP$ est diagonale et comme $Sp(A) = \{1\}$, on a $D = I_n$ donc $A = PDP^{-1} = I_n$. Réciproquement, si $A = I_n$, alors A est symétrique réelle et $A^3 = I_n$. Par conséquent, il existe une unique matrice $A \in \mathcal{S}_n(\mathbb{R})$ telle que $A^3 = I_n$, c'est la matrice $A = I_n$.

Exercice 4 (Oral CCP, PSI, 2018).

- (a) Montrer que si $X \in \mathcal{M}_n(\mathbb{R})$ vérifie $XX^{\top}X = I_n$, elle est inversible et symétrique.
- (b) Trouver toutes les matrices $X \in \mathcal{M}_n(\mathbb{R})$ vérifiant $XX^\top X = I_n$.

Exercice 5. Soit f un endomorphisme autoadjoint de E. Existe-t-il un endomorphisme g autoadjoint de E tel que $g^5 = f$?

Réponse. L'endomorphisme f est autoadjoint, il est donc diagonalisable. Considérons $\mathscr{B} = (e_1, \ldots, e_n)$ base orthonormée de E constituée de vecteurs propres de f, associés aux valeurs propres $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. On définit l'endomorphisme g en donnant les images des vecteurs de la base \mathscr{B} ; plus précisément on définit g comme étant l'unique endomorphisme de E tel que :

$$\forall i \in [1, n], \ g(e_i) = \sqrt[5]{\lambda_i} e_i$$

(remarque : l'application $x \mapsto x^5$ est continue et strictement croissante sur \mathbb{R} , elle réalise donc une bijection de \mathbb{R} sur \mathbb{R} et l'application $x \mapsto \sqrt[5]{x}$ est sa réciproque, définie sur \mathbb{R}). On a alors :

$$\forall i \in [1, n], \ g^5(e_i) = \sqrt[5]{\lambda_i}^5 e_i = \lambda_i e_i = f(e_i)$$

Ainsi, les endomorphismes g^5 et f coïncident sur la base \mathcal{B} de E, ils sont donc égaux. Comme la matrice de g dans la base orthonormée \mathcal{B} est symétrique (elle est en fait diagonale), l'endomorphisme g est autoadjoint. Par conséquent, il existe un endomorphisme autoadjoint g de E tel que $g^5 = f$.

Exercice 6. Démontrer que si f et g sont deux endomorphismes autoadjoints d'un espace euclidien E qui commutent alors il existe \mathscr{B} base de E constituée de vecteurs propres à la fois pour f et g. Réponse. L'endomorphisme f est autoadjoint donc diagonalisable. On note $\lambda_1, \ldots, \lambda_p$ les valeurs propres distinctes de f, on a alors :

$$E = E_{\lambda_1}(f) \oplus \cdots E_{\lambda_n}(f)$$

Considérons $i \in [1, p]$ et posons $E_i = E_{\lambda_i}(f)$ (pour simplifier), c'est un sous-espace propre de f et par hypothèse f et g commutent, on sait donc que dans ce cas, E_i est stable par g. On note g_i l'endomorphisme de E_i induit par g. On peut considérer sur E_i le produit scalaire de E. L'endomorphisme g étant autoadjoint, on a alors :

$$\forall x,y \in E_i, \ \left\langle g_i(x),y \right\rangle = \left\langle g(x),y \right\rangle = \left\langle x,g(y) \right\rangle = \left\langle x,g_i(y) \right\rangle$$

On en déduit que g_i est un endomorphisme autoadjoint de E_i . Il existe donc \mathcal{B}_i base de E_i dont les éléments sont des vecteurs propres pour g_i . Les éléments de \mathcal{B}_i sont donc des vecteurs non nuls de $E_i = E_{\lambda_i}(f)$, ce sont donc également des vecteurs propres pour f. Par concaténation des bases, la réunion $\mathcal{B} = \mathcal{B}_1 \cup \dots \cup \mathcal{B}_p$ est une base de E et d'après ce qui précède elle est constituée de vecteurs propres à la fois pour f et pour g.

Exercice 7.

- (a) Démontrer que si $M \in \mathcal{S}_n(\mathbb{R})$ et $M^2 = 0$ alors M = 0.
- (b) Démontrer que si $M \in \mathcal{M}_n(\mathbb{R})$ et $M^\top M = 0$ alors M = 0.
- (c) Soit $A \in \mathcal{M}_n(\mathbb{R})$ avec $n \ge 2$. On suppose que $AA^{\top} = A^{\top}A$ et que $A^4 = 2A^2 I_n$. Montrer que $A^2 = I_n$.

Exercice 8. Soit $f \in \mathcal{L}(E)$ un endomorphisme autoadjoint. On note $\lambda_1, ..., \lambda_n$ les valeurs propres de f (comptées avec multiplicité) rangées dans l'ordre croissant $\lambda_1 \le \cdots \le \lambda_n$. Démontrer que :

$$\max \left\{ \frac{\left\langle f(x), x \right\rangle}{\|x\|^2} \mid x \in E \setminus \{0\} \right\} = \lambda_n$$

Éablir un résultat analogue pour λ_1 .

Réponse. Notons $\mathscr{B} = (e_1, ..., e_n)$ une base orthonormée de vecteurs propres pour f, associés aux valeurs propres $\lambda_1, ..., \lambda_n$ en supposant les vecteurs de la base ordonnés de sorte que $\lambda_1 \le ... \le \lambda_n$. On a ainsi $\min \operatorname{Sp}(f) = \lambda_1$ et $\max \operatorname{Sp}(f) = \lambda_n$. Soit $x \in E$ noté :

$$x = x_1 e_1 + \dots + x_n e_n$$

On a alors $f(x) = \lambda_1 x_1 + \dots + \lambda_n x_n$ et comme la base \mathcal{B} est orthonormée :

$$\langle f(x), x \rangle = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2 \le \lambda_n (x_1^2 + \dots + x_n^2)$$

et de même:

$$\langle f(x), x \rangle = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2 \ge \lambda_1 (x_1^2 + \dots + x_n^2)$$

Supposons $x \neq 0$ de sorte que $x_1^2 + \cdots + x_n^2 > 0$, on a alors :

$$\lambda_1 \le \frac{\left\langle f(x), x \right\rangle}{\|x\|^2} \le \lambda_n$$

On définit l'ensemble :

$$A = \left\{ \frac{\left\langle f(x), x \right\rangle}{\|x\|^2} \mid x \in \setminus \{0\} \right\}$$

D'après ce qui précède, A est minorée par λ_1 et majorée par λ_n de sorte que $\lambda_1 \le \inf A$ et sup $A \le \lambda_n$. Par ailleurs :

$$\lambda_1 = \frac{\left\langle f(e_1), e_1 \right\rangle}{\|e_1\|^2} \in A$$

$$\lambda_n = \frac{\left\langle f(e_n), e_n \right\rangle}{\|e_n\|^2} \in A$$

et ainsi $\lambda_1 = \inf A$ et sup $A = \lambda_n$.

Endomorphismes autoadjoints usuels

Exercice 9 (*Oral Centrale, PC, 2019*). Soit a et b deux éléments de E non colinéaires. On pose, pour $x \in E$, $f(x) = \langle a, x \rangle b + \langle b, x \rangle a$. Montrer que f est un endomorphisme autoadjoint de E. Déterminer ses valeurs propres et ses sous-espaces propres.

Exercice 10. On considère $E = \mathbb{R}_n[X]$ ainsi que les applications

$$\varphi: (P,Q) \in E^2 \mapsto \int_{-1}^1 \sqrt{1-x^2} P(x) Q(x) dx \text{ et } L: P \in E \mapsto (X^2-1)P'' + 3XP'$$

Démontrer que φ est un produit scalaire sur E puis démontrer que l'application L est un endomorphisme de E, autoadjoint relativement au produit scalaire précédent.

Projecteur orthogonal, symétrie orthogonale

Exercice 11. On considère un vecteur unitaire $u = (a_1, a_2, a_3) \in \mathbb{R}^3$. Déterminer la matrice dans la base canonique de \mathbb{R}^3 de la projection orthogonale sur Vect(u) puis celle de la symétrie orthogonale par rapport à $\text{Vect}(u)^{\perp}$.

Réponse. On note p le projecteur orthogonal sur Vect(u). Comme ||u|| = 1, (u) est une base orthonormée de Vect(u). Ainsi, pour $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$:

$$p(v) = \langle u, v \rangle \ v = (a_1 x + a_2 y + a_3 z) \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_1^2 x + a_1 a_2 y + a_1 a_3 z \\ a_2 a_1 x + a_2^2 y + a_2 a_3 z \\ a_3 a_1 x + a_3 a_2 y + a_2^2 z \end{pmatrix}$$

Notons \mathscr{C} la base canonique de \mathbb{R}^3 , on a alors :

$$Mat_{\mathscr{C}}(p) = \begin{pmatrix} a_1^2 & a_1 a_2 & a_1 a_3 \\ a_2 a_1 & a_2^2 & a_2 a_3 \\ a_3 a_1 & a_3 a_2 & a_3^2 \end{pmatrix} = (a_i a_j)_{\substack{1 \le i \le 3 \\ 1 \le j \le 3}}$$

Notons *M* cette matrice, on sait que s = id - 2p donc :

$$\operatorname{Mat}_{\mathscr{C}}(s) = \operatorname{I}_{3} - 2M = \begin{pmatrix} 1 - 2a_{1}^{2} & -2a_{1}a_{2} & -2a_{1}a_{3} \\ -2a_{2}a_{1} & 1 - 2a_{2}^{2} & -2a_{2}a_{3} \\ -2a_{3}a_{1} & -2a_{3}a_{2} & 1 - 2a_{3}^{2} \end{pmatrix}$$

Exercice 12 (Oral CCP, PC, 2018, Exercice secondaire). On considère $u: \mathbb{R}^3 \to \mathbb{R}^3$ canoniquement associé à

$$A = \frac{1}{14} \begin{pmatrix} 13 & -2 & -3 \\ -2 & 10 & -6 \\ -3 & -6 & 5 \end{pmatrix}$$

- (1) L'endomorphisme u est-il autoadjoint? Déterminer rg(u-id).
- (2) L'endomorphisme *u* est-il un projecteur orthogonal? Quelle est l'image de *u*?
- (3) Déterminer une base orthonormée de vecteurs propres pour u.

Exercice 13. On suppose $n \ge 2$. Démontrer que l'application linéaire canoniquement associée à la matrice

$$A = \begin{pmatrix} 0 & 1 & & & (0) \\ 1 & 0 & & & \\ & & 1 & & \\ & & & \ddots & \\ (0) & & & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

est une symétrie orthogonale et préciser la dimension des sous-espaces caractéristiques.

Réponse. On note f l'application linéaire canoniquement associée à A. On a $A^2 = I_n$ donc f est une symétrie. La matrice A est symétrique (et la base canonique de \mathbb{R}^n est orthonormée) donc f est autoadjoint, donc les sous-espaces propres de f sont orthogonaux deux à deux. On a donc $E_1(f) \oplus_{\perp} E_{-1}(f) = \mathbb{R}^n$ ce qui montre que f est une symétrie orthogonale. La matrice A est donc semblable à diag $(I_p, -I_q)$ avec $p = \dim \ker(f - \mathrm{id})$ et $q = \dim \ker(f + \mathrm{id})$. On a alors p + q = n et $\operatorname{tr}(A) = n - 2 = p - q$. On en déduit que 2n - 2 = 2p donc p = n - 1 et q = 1.

Isométries vectorielles et matrices orthogonales

Exercice 14. Soit $V \in \mathbb{R}^n \setminus \{0\}$. On définit la matrice $H = I_n - \frac{2}{\|V\|^2} V V^{\top}$.

- (a) Démontrer que *H* est une matrice symétrique et orthogonale.
- (b) Démontrer que l'application linéaire h canoniquement associée à H est une symétrie.
- (c) Démontrer h est la symétrie orthogonale par rapport au sous-espace V^{\perp} .

Réponse. On montre facilement que *H* est symétrique. Ensuite :

$$H^{\top}H = H^{2} = \mathbf{I}_{n} - \frac{4}{\|V\|^{2}}VV^{\top} + \frac{4}{\|V\|^{4}}V\underbrace{V^{\top}V}_{=\|V\|^{2}}V^{\top} = \mathbf{I}_{n} - \frac{4}{\|V\|^{2}}VV^{\top} + \frac{4}{\|V\|^{2}}VV^{\top} = \mathbf{I}_{n}$$

Donc H est orthogonale. Comme $h^2=\operatorname{id}, h$ est une symétrie. Comme h est autoadjoint, les sous-espaces propres $\operatorname{Ker}(h-\operatorname{id})$ et $\operatorname{Ker}(h+\operatorname{id})$ sont orthogonaux donc h est une symétrie orthogonale. Ensuite pour $x\in\mathbb{R}^n$:

$$h(x) = x \iff Hx = x \iff VV^{\top}x = 0 \iff \langle V, x \rangle V = 0 \iff x \perp V \iff x \in V^{\perp}$$

Ainsi, $Ker(h-id) = V^{\perp}$ donc h est la symétrie orthogonale par rapport à V^{\perp} .

Exercice 15 (*Oral Mines-Ponts, PC, 2016*). Soit $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$.

- (a) Soit $A \in \mathcal{A}_n(\mathbb{R})$. Montrer que le spectre de A est inclus dans i \mathbb{R} .
- (b) Montrer que l'application $\Phi: M \in \mathcal{A}_n(\mathbb{R}) \mapsto (M+\mathrm{I}_n)(M-\mathrm{I}_n)^{-1}$ réalise une bijection de $\mathcal{A}_n(\mathbb{R})$ sur l'ensemble des matrices de $\mathrm{O}_n(\mathbb{R})$ qui n'ont pas pour valeur propre 1. *Réponse.*
 - (a) On considère $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et $X = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$ un vecteur propre associé. On a alors $AX = \lambda X$ et :

$$X^{\top}\overline{X} = |z_1|^2 + \dots + |z_n|^2 > 0$$

$$(AX)^{\top}\overline{X} = (\lambda X)^{\top}\overline{X} = \lambda \left(|z_1|^2 + \dots + |z_n|^2\right)$$

$$= X^{\top}A^{\top}\overline{X} = -X^{\top}A\overline{X} = -X^{\top}\overline{AX} \quad \text{car } A \text{ est antisymétrique réelle}$$

$$= -X^{\top}\overline{\lambda X} = -\overline{\lambda} \left(|z_1|^2 + \dots + |z_n|^2\right)$$

On en déduit que $\lambda = -\overline{\lambda}$ donc $\lambda \in i\mathbb{R}$. Par conséquent $\operatorname{Sp}_{\mathbb{C}}(A) \subset i\mathbb{R}$.

(b) On procède en plusieurs étapes.

L'application Φ **est bien définie.** Considérons $M \in \mathcal{A}_n(\mathbb{R})$, alors d'après la question précédente $1 \notin \operatorname{Sp}(M)$, donc $M - \operatorname{I}_n$ est inversible et $\Phi(M)$ est bien définie.

L'application Φ **est à valeurs dans** $O_n(\mathbb{R})$. On considère toujours $M \in \mathcal{A}_n(\mathbb{R})$ et on démontre que $\Phi(M) \in O_n(\mathbb{R})$:

$$\Phi(M)^{\top}\Phi(M) = (M - I_n)^{\top - 1}(M + I_n)^{\top}(M + I_n)(M - I_n)^{-1}$$

(notons que pour une matrice A inversible, $(A^{\top})^{-1} = (A^{-1})^{\top}$). Ensuite :

$$\Phi(M)^{\top}\Phi(M) = (-M - \mathbf{I}_n)^{-1}(-M + \mathbf{I}_n)(M + \mathbf{I}_n)(M - \mathbf{I}_n)^{-1}$$
$$= (M + \mathbf{I}_n)^{-1}(M - \mathbf{I}_n)(M + \mathbf{I}_n)(M - \mathbf{I}_n)^{-1}$$

Les matrices $M + I_n$ et $M - I_n$ commutent donc :

$$\Phi(M)^{\top}\Phi(M) = (M + I_n)^{-1}(M + I_n)(M - I_n)(M - I_n)^{-1} = I_n$$

donc $\Phi(M) \in O_n(\mathbb{R})$. On en déduit que Φ est une application de $\mathcal{A}_n(\mathbb{R})$ dans $O_n(\mathbb{R})$.

Le nombre 1 n'est pas valeur propre de $\Phi(M)$. On conserve les notations précédentes, on a :

$$\chi_{\Phi(M)}(1) = \det(\Phi(M) - I_n) = \det((M + I_n)(M - I_n)^{-1} - I_n) = \det(((M + I_n) - (M - I_n))(M - I_n)^{-1})$$
$$= \det(2(M - I_n)^{-1}) \neq 0$$

On en déduit que 1 n'est pas valeur propre de $\Phi(M)$. Jusqu'à présent, on a obtenu que Φ est une application définie sur $\mathscr{A}_n(\mathbb{R})$ et à valeurs dans l'ensemble des matrices appartenant à $O_n(\mathbb{R})$ et qui n'admettent pas 1 comme valeur propre.

Caractère bijectif. Considérons $A \in O_n(\mathbb{R})$ telle que $1 \notin \operatorname{Sp}(A)$. On considère $M \in \mathcal{A}_n(\mathbb{R})$, on a alors :

$$\Phi(M) = A \iff (M + I_n)(M - I_n)^{-1} = A$$

$$\iff M + I_n = A(M - I_n)$$

$$\iff M + I_n = AM - A$$

$$\iff (A - I_n)M = A + I_n$$

Rappelons que $A - I_n$ est inversible, ainsi :

$$\Phi(M) = A \iff M = (A - I_n)^{-1}(A + I_n)$$

Ceci montre que A possède au plus un antécédant par Φ , c'est la matrice $M = (A - \mathbf{I}_n)^{-1}(A + \mathbf{I}_n)$. Réciproquement, considérons une telle matrice M. On a :

$$M^{\top} = (A + I_n)^{\top} ((A - I_n)^{\top})^{-1}$$

$$= (A^{\top} + I_n) (A^{\top} - I_n)^{-1}$$

$$= (A^{-1} + I_n) (A^{-1} - I_n)^{-1}$$

$$= (A^{-1} + I_n) AA^{-1} (A^{-1} - I_n)^{-1}$$

$$= (I_n + A) A ((A^{-1} - I_n) A)^{-1}$$

$$= -M$$

La matrice M est bien antisymétrique. Les équivalences précédentes montrent que M est l'unique antécédant de A par Φ . L'application Φ est donc bijective.

Matrices et endomorphismes symétriques positifs (attendre la fin du chapitre)

Exercice 16 (*Oral Mines-Ponts, PSI, 2019*). On note $\mathscr{S}_n^+(\mathbb{R})$ l'ensemble des matrices $M \in \mathscr{M}_n(\mathbb{R})$ qui sont symétriques et telles que $\operatorname{Sp}(M) \subset \mathbb{R}^+$.

- (a) Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, $M = A^{\top} A \in \mathcal{S}_n^+(\mathbb{R})$.
- (b) Réciproquement, montrer que si $M \in \mathscr{S}_n^+(\mathbb{R})$, alors il existe $A \in \mathscr{M}_n(\mathbb{R})$ telle que $M = A^\top A$. *Réponse.*
 - (a) Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $M = A^{\top} A$. Avec les propriétés de la transposée :

$$M^{\top} = (A^{\top}A)^{\top} = A^{\top}(A^{\top})^{\top} = A^{\top}A = M$$

La matrice M est donc symétrique. De plus, pour $X \in \mathbb{R}^n$:

$$X^{\top}MX = X^{\top}A^{\top}AX = (AX)^{\top}(AX)$$

Rappelons que pour $X, Y \in \mathbb{R}^n$, $X^\top Y$ est leur produit scalaire canonique. Ainsi, en considérant la norme associée :

$$X^{\top}MX = ||AX||^2 \ge 0$$

On a donc $M \in \mathcal{S}_n^+(\mathbb{R})$.

(b) Considérons $M \in \mathcal{S}_n(\mathbb{R})$. La matrice M est symétrique réelle donc il existe $P \in O_n(\mathbb{R})$ telle que $D = P^\top MP$ est diagonale. On note $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, on a alors $\operatorname{Sp}(M) = \{\lambda_1, \ldots, \lambda_n\}$ donc, par définition, $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^+$. On pose pour la suite $\mu_i = \sqrt{\lambda_i}$ pour $i \in [1, n]$ et $\Delta = \operatorname{diag}(\mu_1, \ldots, \mu_n)$. On a alors :

$$M = PDP^{\top} = P\Delta^{2}P^{\top} = P\Delta P^{\top}P\Delta P^{\top}$$

Posons $A = P\Delta P^{\top}$, il est facile de vérifier que A est symétrique et ainsi $M = A^2 = A^{\top}A$.

Exercice 17 (*Oral Polytechnique, PC, 2009*). Soit $A \in \mathcal{S}_n(\mathbb{R})$.

- (1) Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. Montrer que $\langle Ax, x \rangle = 0$ si, et seulement si, Ax = 0.
- (2) Soient $A, B \in \mathcal{S}_n^+(\mathbb{R})$ telles que $A B \in \mathcal{S}_n^+(\mathbb{R})$. Montrer que $\operatorname{Ker}(A) \subset \operatorname{Ker}(B)$ et $\operatorname{Im}(B) \subset \operatorname{Im}(A)$. *Réponse*.
 - (1) Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. La matrice A est symétrique réelle, elle est donc diagonalisable dans une base orthonormée $\mathcal{B} = (e_1, \dots, e_n)$. On note $\lambda_1, \dots, \lambda_n$ les valeurs propres de A associées à ces vecteurs propres. Comme $\operatorname{Sp}(A) = \{\lambda_1, \dots, \lambda_n\} \subset \mathbb{R}^+$, on a $\lambda_1, \dots, \lambda_n \in \mathbb{R}^+$. Considérons $x \in \mathbb{R}^n$, il existe $x_1, \dots, x_n \in \mathbb{R}$ tels que :

$$x = x_1 e_1 + \cdots + x_n e_n$$

La base ${\mathcal B}$ étant orthonormées, on a :

$$Ax = \lambda_1 x_1 e_1 + \dots + \lambda_n x_n e_n$$
$$\langle Ax, x \rangle = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2$$

Supposons $\langle Ax, x \rangle = 0$. Une somme de termes positifs est nulle si, et seulement si, tous ses termes sont nuls, on a donc pour tout $i \in [1, n]$, $\lambda_i x_i^2 = 0$ donc $\lambda_i = 0$ ou $x_i = 0$ et ainsi $\lambda_i x_i = 0$. On en déduit que Ax = 0. **Réciproquement, supposons** Ax = 0. Il est alors évident que $\langle Ax, x \rangle = 0$. On a ainsi démontré l'équivalence.

(2) Supposons $A, B \in \mathcal{S}_n^+(\mathbb{R})$ et $A - B \in \mathcal{S}_n^+(\mathbb{R})$. Pour $x \in \operatorname{Ker} A$:

$$\langle Bx, x \rangle = \langle (B-A)x, x \rangle + \langle Ax, x \rangle = -\langle (A-B)x, x \rangle$$

Or $\langle Bx, x \rangle \ge 0$ et $\langle (A-B)x, x \rangle \ge 0$ (question 1), donc $\langle Bx, x \rangle = 0$ et donc (question 2) Bx = 0 d'où $x \in \operatorname{Ker} B$. On en déduit que $\operatorname{Ker} A \subset \operatorname{Ker} B$. Il faut ensuite démontrer que $\operatorname{Im} B = \operatorname{Ker}(B)^{\perp}$ et $\operatorname{Im} A = \operatorname{Ker}(A)^{\perp}$ (non rédigé ici, démontré en classe). On a alors :

$$\operatorname{Im} B = \operatorname{Ker}(B)^{\perp} \subset \operatorname{Ker}(A)^{\perp} = \operatorname{Im} A$$

Indications

- Ex 1. (a) Que vaut Mz? et $M\overline{z}$? À quoi est égale $(M\overline{z})^{\top}$? (b) Pourquoi a-t-on $\operatorname{Sp}_{\mathbb{C}}(M) \neq \emptyset$.
- Ex 2. tr(A) est la somme des valeurs propres de A, $tr(A^2)$ est la somme des valeurs propres de A^2 et les valeurs propres de A^2 se déduisent de celles de A.
- Ex 3. Diagonaliser A et remplacer A dans l'équation.
- $Ex\ 4$. (a) Utiliser le déterminant. Déduire X^{-1} de l'équation, justifier que X^{-1} est symétrique. (b) Diagonaliser X et remplacer dans l'équation.
- Ex 5. Diagonaliser f puis proposer une application g et vérifier qu'elle convient.
- Ex 6. Justifier que les sous-espaces propres de f sont supplémentaires, stables par g et les endomorphismes induits par g sont autoadjoints.
- Ex 7. (a) Diagonaliser M et remplacer. (b) Considérer les coefficients (i,i) de $M^{\top}M$. (c) Poser $M = A^2 I_n$ et utiliser les résultats précédents.
- *Ex 8.* Considérer une base orthonormée de vecteurs propres pour f. Démontrer que $\langle f(x), x \rangle \leq \lambda_n ||x||^2$. Que peut-on en déduire? Conclure.
- *Ex* 9. Méthode usuelle pour endomorphisme autoadjoint. Prendre la matrice dans une base (bien choisie) pour obtenir les valeurs propres. Vecteurs propres : plus délicat.
- Ex 10. Intégration par parties.
- *Ex 11.* Formule pour la projection orthogonale à partir d'une base orthonormée puis lien entre la symétrie et la projection.
- Ex 12. Méthodes usuelles. Plusieurs moyens pour obtenir les réponses.
- Ex 13. Méthodes usuelles.
- Ex~14. Méthodes usuelles pour symétrique, orthogonale et symétrie. Déterminer les sous-espaces caractéristiques de la symétrie.
- Ex~15. (a) Considérer $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et X vecteur propre associé. Calculer $(AX)^{\top}\overline{X}$ de deux manières différentes. (b) Question plus difficile. Montrer déjà que l'application est bien définie et que $\Phi(M) \in \operatorname{O}_n(\mathbb{R})$.
- Ex~16.~ (a) Méthode du cours. (b) Utiliser le (a). (c) Diagonaliser M.
- *Ex 17.* (1) Utiliser une base orthonormée de vecteurs propres pour *A*. (2) Pour les noyaux : écrire une relation entre $\langle Bx, x \rangle$, $\langle Ax, x \rangle$ et $\langle (A-B)x, x \rangle$. Pour les images : redémontrer que $\text{Im}(A) = \text{Ker}(A)^{\perp}$.