Séries de fonctions

Notation: Pour $f: I \to \mathbb{R}$ et $A \subset I$, si f est bornée sur A alors on note

$$||f||_{\infty,A} = \sup\{|f(x)| \mid x \in A\}$$

Rappel 1 – Une caractérisation des fonctions de classe C^k

Soient $f: I \to \mathbb{K}$ une fonction et $k \in \mathbb{N} \cup \{\infty\}$. On a équivalence entre :

- (i) La fonction f est de classe C^k sur I;
- (ii) Pour tout segment $[a,b] \subset I$, la fonction f est de classe \mathbb{C}^k sur [a,b].

Modes de convergence ١.

Propriétés de la somme d'une série de fonctions 11.

Remarque. Tous ces résultats s'obtiennent directement à partir des résultats sur les suites de fonctions appliqués à la suite des sommes partielles.

Théorème 2 - Continuité de la somme d'une série de fonctions

Soit $\sum_{n \ge n_0} f_n$ une série de fonctions définie au moins sur I. Si :

- Pour tout $n \ge n_0$, la fonction f_n est continue sur I; La série de fonctions $\sum_{n \ge n_0} f_n$ converge uniformément sur I,

alors la somme $\sum_{n \ge n_0}^{+\infty} f_n$ est définie et continue sur I.

Théorème 3 – Échange série intégrale sur un segment avec convergence uniforme

Soit $\sum_{n \ge n_0} f_n$ une série de fonctions définies au moins sur [a,b]. Si :

• Pour tout $n \ge n_0$, la fonction f_n est continue sur [a,b];

• La série de fonctions $\sum_{n \ge n_0} f_n$ converge uniformément sur [a,b],

alors la série numérique
$$\sum_{n \ge n_0} \int_a^b f_n(t) dt$$
 converge et $\int_a^b \left(\sum_{n=n_0}^{+\infty} f_n(t)\right) dt = \sum_{n=n_0}^{+\infty} \left(\int_a^b f_n(t) dt\right)$.

Théorème 4 – Classe C¹ pour la somme d'une série de fonctions

Soit $\sum_{n>n} f_n$ une série de fonctions définies au moins sur I. Si :

- Pour tout n ≥ n₀, la fonction f_n est de classe C¹ sur I;
 La série de fonctions ∑ f_n converge simplement sur I;
- La série de fonctions $\sum_{n \ge n_0}^{n \ge n_0} f'_n$ converge uniformément sur I,

alors la somme
$$\sum_{n=n_0}^{+\infty} f_n$$
 est de classe C^1 sur I et $\left(\sum_{n=n_0}^{+\infty} f_n\right)' = \sum_{n=n_0}^{+\infty} f_n'$.

Théorème 5 – Classe C^k pour la somme d'une série de fonctions

Soient $k \in \mathbb{N}^*$ et $\sum_{n \ge n_0} f_n$ une série de fonctions définies au moins sur I. Si :

- Pour tout $n \ge n_0$, la fonction f_n est de classe C^k sur I;

• Pour tout
$$n \ge n_0$$
, the joint tout j_n est the classe C sur I ;
• Pour tout $p \in [0, k-1]$, la série de fonctions $\sum_{n \ge n_0} f_n^{(p)}$ converge simplement sur I ;
• La série de fonctions $\sum_{n \ge n_0} f_n^{(k)}$ converge uniformément sur I ,
alors la somme $\sum_{n=n_0}^{+\infty} f_n$ est de classe C^k sur I et : $\forall p \in [0, k]$, $\left(\sum_{n=n_0}^{+\infty} f_n\right)^{(p)} = \sum_{n=n_0}^{+\infty} f_n^{(p)}$.

Remarque. Pour montrer que la somme d'une série de fonctions $\sum f_n$ est de classe C^{∞} , on démontre que :

- Chaque fonction f_n est de classe C^{∞} sur I;
- La série de fonctions $\sum f_n$ converge simplement sur I;
- Pour tout $p \in \mathbb{N}^*$, la série de fonctions $\sum f_n^{(p)}$ converge uniformément sur I.

Les hypothèses du théorème de classe C^k sont alors vérifiées pour tout entier $k \ge 1$.

Théorème 6 - de la double limite

Soient $\sum_{n \ge n_0} f_n$ une série de fonctions définies au moins sur I et a un élément de I ou une borne de I (éventuellement $a = +\infty$ ou $a = -\infty$). Si :

- Pour tout $n \ge n_0$, $f_n(x) \xrightarrow[x \to a]{} \ell_n$ une limite finie; La série de fonctions $\sum_{n \ge n_0} f_n$ converge uniformément sur I, alors la série numérique $\sum_{n \ge n_0} \ell_n$ converge et :

$$\sum_{n=n_0}^{+\infty} f_n(x) \xrightarrow[x \to a]{} \sum_{n=n_0}^{+\infty} \ell_n$$

ce que l'on peut également écrire :

$$\lim_{x \to a} \left(\sum_{n=n_0}^{+\infty} f_n(x) \right) = \sum_{n=n_0}^{+\infty} \left(\lim_{x \to a} f_n(x) \right)$$

(échange limite série).

Remarques.

- On peut, pour appliquer ces théorèmes, préférer établir la convergence normale plutôt que la convergence uniforme (cependant il existe des séries de fonctions pour lesquelles il y a convergence uniforme mais pas convergence normale).
- \bigwedge La convergence uniforme (respectivement normale) sur tout segment $[a,b] \subset I$ n'entraine pas la convergence uniforme (respectivement normale) sur I.

Les résultats à connaitre

- Définition de la convergence simple pour une série de fonctions.
- Définition de la convergence normale pour une série de fonctions.
- Définition de la convergence uniforme pour une série de fonctions.
- Lien entre les convergences.
- Continuité de la somme.
- Échange série intégrale sur un segment [a, b] avec convergence uniforme.
- Théorème de classe C¹.
- Théorème de classe C^k .
- Théorème de la double limite (échange limite série).

Quelques objectifs du chapitre

- Connaitre les notions de convergence simple, convergence uniforme, convergence normale.
- Avoir compris les liens entre ces notions.
- Savoir établir qu'une suite de fonctions converge simplement.
- Savoir établir qu'une suite de fonctions converge normalement.
- Savoir utiliser le reste d'ordre *N* pour établir la convergence uniforme.
- Savoir établir des propriétés de la somme d'une série de fonctions.

En pratique

▶ Comment établir la convergence simple?

Pour étudier la convergence simple de $\sum f_n$ sur I, on considère $x \in I$ fixé et on étudie la convergence de la série numérique $\sum f_n(x)$. On peut penser en particulier :

- à la convergence absolue;
- au théorème des séries alternées;
- à établir un équivalent de $f_n(x)$ lorsque $n \to +\infty$ (à x fixé).

Il est rare qu'il faille utiliser des méthodes plus évoluées (revoir cependant les méthodes pour démontrer la convergence d'une série numérique).

► Comment établir la convergence normale?

Pour établir la convergence normale de $\sum f_n$ sur I, il faut obtenir une majoration de la forme :

$$\forall x \in I, |f_n(x)| \le \alpha_n$$

où α_n est indépendant de x et la série numérique $\sum \alpha_n$ converge.

► Comment établir la convergence uniforme?

Pour établir la convergence uniforme de $\sum f_n$ sur I, il faut tout d'abord établir la convergence simple sur *I*. Il faut ensuite obtenir une majoration de la forme :

$$\forall x \in I, \left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \le \alpha_n$$

où α_n est indépendant de x et $\alpha_n \xrightarrow[n \to +\infty]{} 0$.

Comment démontrer la continuité de la somme?

Pour montrer que la somme de la série de fonctions $\sum f_n$ est continue sur I:

- Montrer que chaque fonction f_n est continue sur I;
- Montrer que la série converge uniformément (ou normalement) sur I (ou sur tout segment $[a, b] \subset I$).

L'hypotèse difficile à obtenir est la convergence uniforme (ou normale).

▶ Comment démontrer le caractère C^1 , C^k , C^∞ de la somme?

Pour montrer que la somme de la série de fonctions $\sum f_n$ est de classe \mathbb{C}^1 sur un intervalle I:

- Montrer que chaque fonction f_n est de classe C^1 sur I;
- Montrer que la série $\sum f_n$ converge simplement sur I;
- Montrer que la série $\sum f'_n$ converge uniformément (ou normalement) sur I (ou sur tout segment $[a, b] \subset I$.

Pour montrer que la somme de la série $\sum f_n$ est de classe \mathbf{C}^k $(k \ge 1)$ sur un intervalle I :

- Montrer que chaque fonction f_n est de classe C^k sur I;
- Montrer que les séries $\sum f_n, \sum f'_n, \dots, \sum f_n^{(k-1)}$ convergent simplement sur I; Montrer que la série $\sum f_n^{(k)}$ converge uniformément (ou normalement) sur I (ou sur tout segment $[a, b] \subset I$).

Pour montrer que la somme de la série $\sum f_n$ est de classe C^{∞} sur un intervalle I:

- Montrer que chaque fonction f_n est de classe C^{∞} sur I;
- Montrer que :
 - la série $\sum f_n$ converge simplement sur I;
 - pour tout $k \ge 1$, la série $\sum f_n^{(k)}$ converge uniformément (ou normalement) sur I(ou sur tout segment inclus dans *I*).

L'hypothèse difficile à démontrer est la convergence uniforme (ou normale).

► Comment intégrer terme à terme?

Par calculer l'intégrale de la somme d'une série de fonctions $\sum f_n$, appliquer l'un des deux théorèmes du cours:

- le premier est valable uniquement pour une intégrale sur un segment [a, b], l'hypothèse « difficile » à démontrer est la convergence uniforme sur [a, b];
- le second est valable sur un intervalle quelconque *I* et il y a plus de conditions à vérifier. La plus difficile est la convergence de la série numérique $\sum \int_I |f_n(t)| dt$.

▶ Comment calculer la somme d'une série de fonctions?

• Il est fréquent dans les exercices de déterminer l'expression de f' (ou une équation différentielle sur f) et d'en déduire une expression de f;

• Voir également les méthodes de calcul de la somme d'une série numérique.

▶ Comment calculer des limites et obtenir des équivalents?

Pour déterminer la limite de la somme de la série $\sum f_n$, on peut :

- Appliquer le théorème d'échange série-limite;
- Utiliser des majorations, minorations et encadrements;
- En particulier réaliser un encadrement de la somme par des intégrales;
- Lorsqu'il s'applique, le théorème des séries alternées peut également fournir des encadrement.

Pour déterminer un équivalent de la somme :

- Deviner l'équivalent et se ramener à un problème de limite (cf. ce qui précède);
- Réaliser un encadrement de la somme par des intégrales.

Pour pouvoir appliquer le théorème d'échange série-limite en x_0 , il faut avoir démontré la convergence normale sur un intervalle I contenant x_0 (ou auquel x_0 est adhérent).

Pour réaliser un encadrement par des intégrales sur une série de fonctions de la forme $\sum_{n \ge n_0} f_n(x)$, on considère à x fixé la fonction g_x définie de telle sorte que $g_x(t) = f_n(x)$.

Illustrations du cours

Exercice 1 *Convergence simple, convergence normale.* On considère pour $n \ge 1$ la fonction :

$$f_n: x \ge 0 \mapsto \frac{\ln(1+x^n)}{n}$$

- (a) Démontrer que la série de fonctions $\sum_{n\geq 1} f_n$ converge simplement sur [0,1[. Que dire de la convergence sur $[1,+\infty[$?
- (b) Démontrer que $\sum_{n \ge 1} f_n$ converge normalement sur tout segment [0, a] avec 0 < a < 1.
- (c) Étudier la convergence normale de $\sum_{n\geq 1} f_n$ sur [0,1[.

Exercice 2 *Continuité* (1). On considère la série de fonctions $\sum_{n\geq 1} f_n$ où pour $n\geq 1$:

$$f_n: x \in]0, +\infty[\mapsto \frac{(-1)^n}{\sqrt{1+nx}}$$

Démontrer que cette série de fonctions converge simplement sur $]0, +\infty[$ et que sa somme est continue sur $]0, +\infty[$.

Exercice 3 *Continuité* (2). On considère la série de fonctions $\sum_{n \ge 1} f_n$ avec pour $n \ge 1$:

$$f_n(x) = \frac{\sin(nx)}{nx} \frac{1}{n^2} \quad \text{si} \quad x \neq 0$$
$$= \frac{1}{n^2} \quad \text{sinon}$$

Démontrer que cette série de fonctions converge normalement sur $\mathbb R$ et que sa somme est continue sur $\mathbb R$.

Exercice 4 *Intégration avec convergence normale.* Démontrer que pour tout $x \in [0,1]$:

$$\frac{1}{2-x} = \sum_{n=1}^{+\infty} \frac{x^{n-1}}{2^n}$$

En déduire l'égalité $\int_0^1 \frac{1}{2-x} dx = \sum_{n=1}^{+\infty} \frac{1}{n2^n}$.

Exercice 5 *Caractère* C^1 . Démontrer que la fonction f suivante est de classe C^1 sur \mathbb{R} :

$$f: x \mapsto \sum_{n=1}^{+\infty} \frac{n(-1)^{n-1}}{n^2 + x^2}$$

Exercice 6 Caractère C^{∞} . On considère la fonction ζ de Riemann définie par

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$

Démontrer que ζ est définie et de classe C^{∞} sur]1, $+\infty$ [.

Exercice 7 Limites, équivalents.

- (a) Démontrer que la fonction $f: x \mapsto \sum_{n=0}^{+\infty} \frac{1}{n^2 + x^2}$ est définie sur \mathbb{R}^* .
- (b) Déterminer la limite de f en $+\infty$.
- (c) Déterminer la limite de f en 0.
- (d) Déterminer des équivalents de f en 0 et en $+\infty$.

Exercice *♠ À faire vous-même pour voir si vous avez compris.* On définit lorsque c'est possible :

$$f(x) = \sum_{n=0}^{+\infty} \frac{e^{-nx}}{1 + n^2}$$

Démontrer que f est définie et continue sur \mathbb{R}^+ et qu'elle est de classe \mathbb{C}^1 sur \mathbb{R}^{+*} .

Vrai/Faux

On considère la série de fonctions $\sum_{n\geq 1} u_n$ où pour tout réel x,

$$u_n(x) = \frac{1}{2^n} \cos(nx)$$

- (1) Il existe au moins un réel x pour lequel la série $u_n(x)$ diverge.
- (2) Le terme général de cette série ne converge jamais vers 0.
- (3) La série $\sum_{n\geq 1} u_n$ converge uniformément sur \mathbb{R} .
- (4) La série $\sum_{n \ge 1} u_n$ ne converge pas normalement sur \mathbb{R} .

On considère une série de fonctions $\sum_{n\geq 0} f_n$ définies au moins sur l'intervalle $[0, +\infty[$.

- (5) Si la série de fonctions $\sum f_n$ converge normalement sur $[0, +\infty[$, alors elle converge uniformément sur $]0, +\infty[$.
- (6) Si la série de fonctions $\sum f_n$ converge normalement sur $[0, +\infty[$, alors elle converge simplement sur $[0, +\infty[$.
- (7) Si la série de fonctions $\sum f_n$ converge normalement sur $]0, +\infty[$ et si la série $\sum f_n(0)$ converge, alors la série de fonctions $\sum f_n$ converge normalement sur $[0, +\infty[$.
- (8) Si la série de fonctions $\sum f_n$ converge simplement sur $]0, +\infty[$, alors elle ne converge pas normalement sur $[0, +\infty[$.
- (9) Si la série de fonctions $\sum f_n$ ne converge pas uniformément sur $]0, +\infty[$, alors elle ne converge pas simplement sur $[0, +\infty[$.
- (10) Si la série de fonctions $\sum f_n$ converge normalement sur $[a, +\infty[$ quel que soit a > 0, alors elle converge simplement sur $]0, +\infty[$.
- (11) Si la série de fonctions $\sum f_n$ converge normalement sur $[a, +\infty[$ quel que soit a > 0, alors elle converge uniformément sur $]0, +\infty[$.
- (12) Si la série de fonctions $\sum f_n$ converge normalement sur $[a, +\infty[$ quel que soit a > 0, alors elle converge normalement sur $]0, +\infty[$.
- (13) Si la série de fonctions $\sum f_n$ converge normalement sur [0, a] quel que soit a > 0, alors la série de fonctions $\sum f_n$ converge normalement sur $[0, +\infty[$.
- (14) Si la série de fonctions $\sum f_n$ converge normalement sur $[a, +\infty[$ quel que soit a > 0 et converge normalement sur]0, 1[, alors elle converge normalement sur $]0, +\infty[$.
- (15) Si la série de fonctions $\sum f_n$ converge normalement sur $[a, +\infty[$ quel que soit a > 0 et converge normalement sur]0,1[, alors elle converge uniformément sur $]0,+\infty[$.

On considère une série de fonctions $\sum_{n\geq 0} f_n$ définies au moins sur l'intervalle [0,1].

- (16) Si la série de fonctions $\sum f_n$ converge simplement sur tout segment [a, b] avec 0 < a < b < 1, alors elle converge simplement sur]0,1[.
- (17) Si la série de fonctions $\sum f_n$ converge uniformément sur tout segment [a, b] avec 0 < a < b < 1, alors elle converge uniformément sur]0,1[.
- (18) Si la série de fonctions $\sum f_n$ converge normalement sur tout segment [a, b] avec 0 < a < b < 1, alors elle converge normalement sur [0, 1].
- (19) Si la série de fonctions $\sum f_n$ converge simplement sur tout segment [a, b] avec $0 \le a < b \le 1$, alors elle converge simplement sur [0, 1].
- (20) Si la série de fonctions $\sum f_n$ converge uniformément sur tout segment [a, b] avec $0 \le a < b \le 1$, alors elle converge uniformément sur [0, 1].

(21) Si la série de fonctions $\sum f_n$ converge normalement sur tout segment [a, b] avec $0 \le a < b \le 1$, alors elle converge normalement sur [0, 1].

On considère une série de fonctions $\sum_{n\geq 0} f_n$ définies sur \mathbb{R} qui converge simplement sur \mathbb{R} et dont la somme est notée f.

- (22) Si les fonctions f_n sont toutes continues sur \mathbb{R} et f n'est pas continue en 0, alors la série de fonctions $\sum f_n$ ne converge par normalement sur \mathbb{R} .
- (23) Si les fonctions f_n sont toutes continues sur \mathbb{R} et f est continue sur \mathbb{R}^* , alors la série de fonctions $\sum f_n$ converge normalement sur \mathbb{R}^{+*} .
- (24) Si les fonctions f_n sont toutes continues sur \mathbb{R} et f est continue sur \mathbb{R}^* , alors la série de fonctions $\sum f_n$ converge uniformément sur \mathbb{R}^{+*} .
- (25) Si les fonctions f_n sont toutes continues sur \mathbb{R} et la série de fonctions $\sum f_n$ converge normalement sur [-a, a] quel que soit a > 0, alors f est continue sur \mathbb{R} .
- (26) Si les fonctions f_n sont toutes continues sur \mathbb{R} et la série de fonctions $\sum f_n$ converge uniformément sur [-a, a] quel que soit a > 0, alors f est continue sur \mathbb{R} .
- (27) Si les fonctions f_n sont toutes de classe C^1 sur \mathbb{R} et la série de fonctions $\sum f'_n$ converge uniformément sur [-a,a] quel que soit a>0, alors f est continue sur \mathbb{R} .
- (28) Si les fonctions f_n sont toutes de classe \mathbb{C}^1 sur \mathbb{R} et la fonction f n'est pas continue sur \mathbb{R} alors la série de fonctions $\sum f'_n$ ne converge pas uniformément sur \mathbb{R} .
- (29) Si les fonctions f_n sont toutes croissantes sur \mathbb{R} , alors f est croissante sur \mathbb{R} .
- (30) Si les fonctions f_n sont toutes monotones sur \mathbb{R} , alors f est monotone sur \mathbb{R} .