Compléments d'algèbre linéaire

- Rappels de PCSI à relire: Les notations de l'algèbre linéaire, Applications linéaire, Bases d'un espace vectoriel, Notions de dimension, Noyau et image d'une application linéaire, Matrice d'un endomorphisme, Sous-espaces vectoriels, Sous-espaces engendrés, Somme de sous-espaces vectoriels, Déterminants.
- ♦ On note $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} ; E, E_i, F désignent des \mathbb{K} -espaces vectoriels.

I. Quelques rappels de première année

1 Applications linéaires

Théorème 1 - du rang

Si E est de dimension finie et $f \in \mathcal{L}(E, F)$, alors $\operatorname{rg} f + \dim \operatorname{Ker} f = \dim E$.

Théorème 2 - Application linéaire définie par l'image des vecteurs d'une base

Si E est un espace de dimension finie, $\mathscr{B} = (e_1, ..., e_n)$ est une base de E et $(u_1, ..., u_n)$ est une famille quelconque d'éléments de F, alors il existe une unique application linéaire $f: E \to F$ telle que : $\forall i \in [1, n]$, $f(e_i) = u_i$.

Corollaire 3 - Égalité de deux applications linéaire

Si E est un espace de dimension finie, $\mathcal{B} = (e_1, ..., e_n)$ est une base de E et $f, g \in \mathcal{L}(E, F)$, alors on a équivalence entre :

- (i) Les applications f et g sont égales;
- (ii) Pour tout $i \in [1, n]$, $f(e_i) = g(e_i)$.

Théorème 4 - Changement de base pour un endomorphisme

Si E est de dimension finie, $f \in \mathcal{L}(E)$ et \mathcal{B} et \mathcal{B}' sont deux bases de E, $A = \operatorname{Mat}_{\mathcal{B}}(f)$ et $B = \operatorname{Mat}_{\mathcal{B}'}(f)$, alors :

$$\operatorname{Mat}_{\mathscr{B}'}(f) = P^{-1} \times \operatorname{Mat}_{\mathscr{B}}(f) \times P$$

 $avec P \in GL_n(\mathbb{K})$ la matrice de passage de \mathscr{B} à \mathscr{B}' , c'est à dire $P = Mat_{\mathscr{B}',\mathscr{B}}(id) = Mat_{\mathscr{B}}(\mathscr{B}')$.

Théorème 5 – Équations linéaires

Une équation linéaire est une équation de la forme :

$$f(x) = b \tag{*}$$

avec $f \in \mathcal{L}(E,F)$ et b un élément de F. L'inconnue est $x \in E$. Il y a deux cas possibles :

- $Sib \notin Im(f)$, alors l'équation (*) ne possède pas de solution;
- $Si\ b \in Im(f)$, alors il existe $x_0 \in E$ tel que $f(x_0) = b$ et dans ce cas l'ensemble des solutions de l'équation (*) est :

$$x_0 + \operatorname{Ker}(f) = \{x_0 + y \mid y \in \operatorname{Ker}(f)\}\$$

2 Rappels sur les opérations matricielles

II. Produits d'espaces vectoriels, sommes, sommes directes

Définition 6 - Produit d'espaces vectoriels

Soient $E_1, ..., E_p$ des \mathbb{K} -espaces vectoriels. On définit leur produit cartésien :

$$E_1 \times \cdots \times E_p = \{(x_1, \dots, x_p) \mid \forall i [1, p], x_i \in E_i \}$$

On définit deux opérations sur $E_1 \times \cdots \times E_p$ de la manière suivante. Pour $x = (x_1, \dots, x_p)$ et $y = (y_1, \dots, y_p)$ des éléments de $E_1 \times \cdots \times E_p$ et $\lambda \in \mathbb{K}$, on pose :

$$x + y = (x_1 + y_1, \dots, x_p + y_p)$$
$$\lambda \cdot x = (\lambda x_1, \dots, \lambda x_p)$$

Muni de ces opérations, $E_1 \times \cdots \times E_p$ est lui-même un \mathbb{K} -espace vectoriel appelé espace vectoriel produit de E_1, \ldots, E_p .

Théorème 7 - Dimension d'un produit d'espaces vectoriels

On a les résultats suivants.

(1) On reprend les mêmes notations. Si $E_1, ..., E_p$ sont tous de dimension finie, alors $E_1 \times \cdots \times E_p$ est lui-même de dimension finie et :

$$\dim(E_1 \times \cdots \times E_p) = \dim E_1 + \cdots + \dim E_p$$

(2) En particulier, si E et F sont deux \mathbb{K} -espaces vectoriels de dimension finie, alors $E \times F$ est de dimension finie et $\dim(E \times F) = \dim E + \dim F$.

Définition 8 - Sommes, sommes directes et sous-espaces supplémentaires

Soient $F_1, ..., F_p$ des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E.

• On définit l'ensemble :

$$F_1 + \dots + F_p = \left\{ x_1 + \dots + x_p \mid (x_1, \dots, x_p) \in F_1 \times \dots \times F_p \right\}$$

L'ensemble $F_1 + \cdots + F_p$ est un sous-espace vectoriel de E appelé somme des sous-espaces F_1, \ldots, F_p .

• On dit que la somme $F_1 + \cdots + F_p$ est directe lorsque :

$$\forall (x_1, \dots, x_p) \in F_1 \times \dots \times F_p, \ x_1 + \dots + x_p = 0 \implies x_1 = \dots = x_p = 0$$

Lorsque c'est le cas, la somme $F_1 + \cdots + F_p$ est notée $F_1 \oplus \cdots \oplus F_p$.

• On dit que $F_1, ..., F_p$ sont des sous-espaces supplémentaires de E lorsque la somme $F_1 + \cdots + F_p$ est directe et égale à E. On note alors :

$$E = F_1 \oplus \cdots \oplus F_p$$

<u>∧</u> Remarque. Les équivalences :

$$E = F \oplus G \iff \begin{cases} F + G = E \\ F \cap G = \{0\} \end{cases}$$

$$\iff \begin{cases} F \cap G = \{0\} \\ \dim F + \dim G = \dim E \end{cases}$$
 (en dimension finie)

ne sont valables que pour des sommes de 2 sous-espaces vectoriels.

Proposition 9 - Caractérisation des sommes directes, des supplémentaires

On reprend les mêmes notations. On a équivalence entre :

- (i) La somme $F_1 + \cdots + F_p$ est directe;
- (ii) Quel que soit $y \in F_1 + \cdots + F_p$, il existe un unique $(x_1, \dots, x_p) \in F_1 \times \cdots \times F_p$ tel que $y = x_1 + \cdots + x_p$.

On a de même équivalence entre :

- (i) Les sous-espaces $F_1, ..., F_p$ sont supplémentaires dans E;
- (ii) Quel que soit $y \in E$, il existe un unique $(x_1, ..., x_p) \in F_1 \times \cdots \times F_p$ tel que $y = x_1 + \cdots + x_p$.

Proposition 10 - Dimension d'une somme

On reprend les mêmes notations. On a les résultats suivants :

(1) Si $F_1, ..., F_p$ sont de dimension finie, alors $F_1 + \cdots + F_p$ est de dimension finie et :

$$\dim(F_1 + \dots + F_p) \le \dim F_1 + \dots + \dim F_p$$

- (2) Dans la formule précédente, on a égalité si, et seulement si, la somme $F_1 + \cdots + F_p$ est directe.
- (3) Cas particulier p = 2. Si F et G sont deux sous-espaces vectoriels de dimension finie, alors:

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$
 (formule de Grassman)

En particulier:

$$\dim(F+G) \leq \dim F + \dim G$$

et on a égalité si, et seulement si, $F \cap G = \{0\}$ si, et seulement si, la somme F + G est directe.

Corollaire 11 - Supplémentaires et dimension

On suppose que E est de dimension finie et $F_1, ..., F_p$ sont des sous-espaces vectoriels de E. On a équivalence entre :

- (i) Les sous-espaces $F_1, ..., F_p$ sont supplémentaires dans E;
- (ii) La somme $F_1 + \cdots + F_p$ est directe et $\dim F_1 + \cdots + \dim F_p = \dim E$.

Théorème 12 - Concaténation des bases

Si E est de dimension finie, $F_1, ..., F_p$ sont des sous-espaces vectoriels de E admettant des bases respectives $\mathcal{B}_1, ..., \mathcal{B}_p$, alors on a équivalence entre :

- (i) Les sous-espaces $F_1, ..., F_p$ sont des sous-espaces supplémentaires de E;
- (ii) La réunion $\mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_p$ est une base de E.

La réunion $\mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_p$ est aussi appelée la concaténation des bases $\mathcal{B}_1, \ldots, \mathcal{B}_p$.

Définition 13 - Bases adaptées

Soit E un \mathbb{K} *-espace vectoriel de dimension finie, on note n* = dim *E*.

- Si F est un sous-espace vectoriel de E, de dimension p, on appelle base de E adaptée à F toute base $\mathcal{B} = (e_1, ..., e_n)$ de E telle que $(e_1, ..., e_p)$ est une base de E (i.e. toute base de E obtenue en complétant une base de F).
- $Si F_1, ..., F_p$ sont des sous-espaces supplémentaires de E, on appelle base de E adaptée à la décomposition $E = F_1 \oplus \cdots \oplus F_p$ obtenue par concaténation de bases de $F_1, ..., F_p$.

III. Sous-espaces stables

IV. Matrices par blocs et déterminants

V. Matrices semblables et trace

Définition 14 - Matrices semblables

Deux matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ sont semblables lorsqu'il existe $P \in GL_n(\mathbb{K})$ tel que $A = P^{-1}BP$.

Proposition 15

Soient E de dimension finie, $f \in \mathcal{L}(E)$, \mathscr{B} une base de E et $A = \operatorname{Mat}_{\mathscr{B}}(f)$. On a les résultats suivants :

- (1) Si \mathscr{B}' est une base de E et $B = \operatorname{Mat}_{\mathscr{B}'}(f)$, alors A et B sont semblables (et $B = P^{-1}AP$ avec P la matrice de passage de \mathscr{B} à \mathscr{B}');
- (2) Si B est semblable à A, alors il existe \mathscr{B}' base de E telle que $B = \operatorname{Mat}_{\mathscr{B}'}(f)$. On dit que des matrices semblables représentent la même application linéaire dans des bases différentes.

Définition 16 - Trace d'une matrice carrée

Pour
$$A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$$
, on pose $\operatorname{tr}(A) = \sum_{i=1}^n a_{ii}$.

Théorème 17 - Propriétés de la trace

- (1) tr est application linéaire de $\mathcal{M}_n(\mathbb{K})$ dans \mathbb{K} ;
- (2) $\forall A, B \in \mathcal{M}_n(\mathbb{K}), \operatorname{tr}(AB) = \operatorname{tr}(BA) \operatorname{et} \operatorname{tr}(A^{\top}) = \operatorname{tr}(A);$
- (3) $\forall A \in \mathcal{M}_n(\mathbb{K}), \forall P \in GL_n(\mathbb{K}), \operatorname{tr}(P^{-1}AP) = \operatorname{tr}(A).$

Définition 18 - Trace d'un endomorphisme

Si E est de dimension finie et $f \in \mathcal{L}(E)$, on pose $\operatorname{tr} f = \operatorname{tr}(\operatorname{Mat}_{\mathscr{B}}(f))$ où \mathscr{B} est une base de E (le résultat est indépendant du choix de \mathscr{B}).

Théorème 19 - Propriétés de la trace

- (1) tr est une application linéaire de $\mathcal{L}(E)$ dans \mathbb{K} ;
- (2) $\forall f, g \in \mathcal{L}(E), \operatorname{tr}(fg) = \operatorname{tr}(gf).$

VI. Formes linéaires et hyperplans

Les résultats à connaitre

Rappels de première année :

- Définition d'une application linéaire par l'image des vecteurs d'une base. Corollaires : caractérisation des application linéaires égales, de l'application linéaire nulle (savoir redémontrer rapidement que si f et g sont égales sur une base de E, alors f = g).
- Théorème du rang (en particulier : application aux matrices).
- Définition d'une équation linéaire; ensemble des solutions d'une telle équation.

Résultats de deuxième année :

- Trace d'une matrice carrée, d'un endomorphisme. Propriétés de la trace.
- Théorème du rang appliqué à une matrice $A \in \mathcal{M}_{np}(\mathbb{K})$.
- Définition de la somme de *n* sous-espaces d'un espace vectoriel *E*.
- Somme directe de *n* sous-espaces d'un espace vectoriel *E*; caractérisation dans le cas de la dimension finie.
- Définition de *n* sous-espaces supplémentaires; caractérisation dans le cas général, cas de la dimension finie.
- Définition : sous-espace stable par un endomorphisme, endomorphisme induit.
- Caractérisation des sous-espaces stables engendrés par une famille finie de vecteurs.
- Si f et g commutent, Ker f est stable par g (savoir redémontrer rapidement ce résultat).
- Matrice d'un endomorphisme dans une base adaptée à un sous-espace stable; matrice d'un endomorphisme dans une base adaptée à des sous-espaces supplémentaires stables.
- Déterminant d'une matrice triangulaire par blocs.

Quelques objectifs du chapitre

- Savoir démontrer que des sous-espaces sont supplémentaires.
- Savoir traduire matriciellement des propriétés d'un endomorphisme, et inversement.
- Savoir établir qu'un sous-espace est stable par un endomorphisme.

En pratique

▶ Comment démontrer qu'une famille est une base?

Pour démontrer que $(x_1, ..., x_n)$, famille finie d'éléments de E, est une base de E, on peut :

- Appliquer la définition en montrant que $(x_1, ..., x_n)$ est libre et génératrice de E;
- Démontrer que pour tout vecteur $x \in E$, il existe une *unique* famille $(x_1, ..., x_n) \in \mathbb{K}^n$ telle que $x = x_1 e_1 + \cdots + x_n e_n$;
- Si l'on sait de plus que E est de dimension finie, avec dim E = n, alors on peut soit montrer que $(x_1, ..., x_n)$ est libre, soit montrer qu'elle est génératrice.

▶ Comment démontrer que des sous-espaces sont supplémentaires ?

Pour démontrer que E_1, \ldots, E_n , sous-espaces vectoriels de E, sont supplémentaires, on peut :

• Appliquer la définition : montrer que la somme $E_1 + \cdots + E_n$ est directe et égale à E;

- Démontrer que pour tout vecteur $x \in E$, il existe $x_1 \in E_1, ..., x_n \in E_n$ uniques tels que $x = x_1 + \cdots + x_n$;
- Si E est de dimension finie, on peut démontrer que dim $E_1 + \cdots + \dim E_n = \dim E$ et que, pour tout vecteur $x \in E$, il existe $x_1 \in E_1, \dots, x_n \in E_n$ tels que $x = x_1 + \cdots + x_n$.

Dans le cas où il n'y a que deux sous-espaces, E_1 et E_2 , les méthodes précédentes s'appliquent mais on peut également :

- Démontrer que $E_1 + E_2 = E$ et $E_1 \cap E_2 = \{0\}$;
- Si *E* est de dimension finie, démontrer que $E_1 \cap E_2 = \{0\}$ et dim $E_1 + \dim E_2 = \dim E$;
- Si E est de dimension finie, démontrer que $E_1 + E_2 = E$ et dim $E_1 + \dim E_2 = \dim E$.

▶ Comment démontrer que $f \in \mathcal{L}(E,F)$ est un isomorphisme ?

Soit $f: E \to F$ une application linéaire. Pour démontrer que f est un isomorphisme, on peut :

- Démontrer que f est bijective, pour cela on considère $y \in F$ et on montre qu'il existe un unique $x \in E$ tel que y = f(x);
- Démontrer que f est injective et surjective, pour cela on montre que $\text{Im}\, f = F$ et $\text{Ker}\, f = \{0\}$;
- Si *E* et *F* sont de dimension finie et dim *E* = dim *F*, il suffit de démontrer soit l'injectivité de *f* , soit la surjectivité.

Lorsque *E* et *F* sont de dimension finie, on peut aussi :

• Considérer la matrice M de f dans des bases de E et F et démontrer que M est inversible.

Enfin, si f est un endomorphisme de E et E est de dimension finie, on peut :

• Démontrer que $det(f) \neq 0$.

▶ Comment appliquer le théorème du rang à une matrice?

Considérons $M \in \mathcal{M}_{n,p}(\mathbb{K})$ et $f : \mathbb{K}^p \to \mathbb{K}^n$ l'application linéaire canoniquement associée à M. Le théorème du rang appliqué à f s'écrit : $\operatorname{rg} f + \dim \operatorname{Ker} f = \dim \mathbb{K}^p$. On rappelle que $\operatorname{rg} M = \operatorname{rg} f$, on convient de noter $\operatorname{Ker} M = \operatorname{Ker} f$, alors :

 $\operatorname{rg} M + \dim \operatorname{Ker} M = n$ (nombre de colonnes de M)

▶ *** Sur les matrices (ou endomorphismes) nilpotents

Si $f \in \mathcal{L}(E)$ est nilpotent, alors :

- Il existe un entier $p \ge 1$ tel que $f^p = 0$ et $f^{p-1} \ne 0$ (cet entier p s'appelle l'indice de nilpotence de f);
- Si on considère $x_0 \notin \text{Ker}(f^{p-1})$, alors la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est libre; Si une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est strictement triangulaire supérieure (ou inférieure), alors elle est nilpotente, de même que l'endomorphisme canoniquement associé à A.

▶ *** Sur les matrices (ou endomorphismes) de rang 1

- Si $M \in \mathcal{M}_n(\mathbb{K})$ est de rang 1, alors il existe $X, Y \in \mathbb{K}^n$ non nuls tels que $M = XY^\top$;
- Si $X, Y \in \mathbb{K}^n$ et $M = XY^{\top}$, alors $\operatorname{rg} M \le 1$ (M est nulle si X = 0 ou Y = 0 et de rang 1 sinon);

Illustrations du cours

Exercice 1 *Matrices semblables*. Démontrer que $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 3 & -1 \\ 0 & 4 & -2 \end{pmatrix}$ est semblable à :

$$M = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Exercice 2 Supplémentaires (1) Concaténation des bases. Démontrer que les sous-espaces vectoriels

$$F = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \mid x + y = z + t = 0 \right\} \qquad G = \text{Vect} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad H = \text{Vect} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

sont supplémentaires dans \mathbb{R}^4 .

Exercice 3 Supplémentaires (2) Utilisation de la dimension. On suppose que E est un espace de dimension finie. Soit $f \in \mathcal{L}(E)$ tel que Ker f = Ker f². Démontrer que Im $f \oplus$ Ker f = E.

Exercice 4 Supplémentaires (3) Existence et unicité de la décomposition. Soit $f \in \mathcal{L}(E)$ tel que $f^3 = f$. Démontrer que les sous-espaces $\operatorname{Ker} (f - \operatorname{id})$ et $\operatorname{Ker} (f + \operatorname{id})$ sont des sous-espaces supplémentaires de E.

Exercice 5 Sous-espaces stables. Soit f l'endomorphisme f de \mathbb{R}^3 canoniquement associé

à la matrice
$$M = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
. Les sous-espaces

$$F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid y + z = 0 \right\}; \qquad G = \text{Vect} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

sont-ils stables par f?

Exercice 6 Sous-espaces stables et matrice triangulaire supérieure. Soient E un \mathbb{K} -espace vectoriel de dimension finie, $\mathscr{B} = (e_1, \dots, e_n)$ une base de E et $f \in \mathscr{L}(E)$ telle que $T = \operatorname{Mat}_{\mathscr{B}}(f)$ est triangulaire supérieure. Démontrer que pour tout $i \in [1, n]$, $F_i = \operatorname{Vect}(e_1, \dots, e_i)$ est stable par f.

Exercice 7 *Sous-espaces stables et dérivation dans* $\mathbb{K}_n[x]$. On considère l'endomorphisme :

$$\begin{array}{ccc} f : \ \mathbb{K}_n[X] & \to & \mathbb{K}_n[X] \\ P & \mapsto & P' \end{array}$$

Déterminer les sous-espaces stables par f (indication : considérer F sous-espace stable par f et $P_0 \in F$ de degré maximal).

Exercice 8 *Endomorphismes tels que* $f \circ g = 0$. Soient $f, g \in \mathcal{L}(E)$. Démontrer l'équivalence :

$$f \circ g = 0 \iff \operatorname{Im} g \subset \operatorname{Ker} f$$

Exercice 9 *Équation linéaire*. On veut déterminer les suites $(u_n)_{n \in \mathbb{N}}$ telles que :

$$\forall n \in \mathbb{N}, \ u_{n+1} = 3u_n + 2^n \tag{E}$$

- (a) Vérifier que (*E*) est une équation linéaire.
- (b) Résoudre l'équation homogène associée à (*E*).
- (c) Chercher une solution particulière de (*E*) sous la forme $u_n = C2^n$ avec $C \in \mathbb{R}$.
- (d) Résoudre l'équation (E).

Exercice A faire vous-même pour voir si vous avez compris.

- (a) Démontrer que $F = \{P \in \mathbb{R}_2[X] \mid P(1) = 0\}$ est un sous-espace vectoriel de $\mathbb{R}_2[X]$. Déterminer une base et la dimension de F.
- (b) Démontrer que F et $\mathbb{R}_0[X]$ sont des sous-espaces supplémentaires de $\mathbb{R}_2[X]$.
- (c) Déterminer la matrice M dans la base $\mathscr{C} = (1, X, X^2)$ du projecteur sur $\mathbb{R}_0[X]$ parallèlement à F.
- (d) Démontrer que M est semblable à la matrice $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Vrai/Faux

Dans tout ce qui suit, E et F sont des \mathbb{K} -espaces vectoriels de dimension finie. On considère une application $f: E \to F$ linéaire.

- (1) Si f est un isomorphisme, alors dim Im f + dim Ker f = dim F.
- (2) Si $\operatorname{rg} f = \dim E$, alors f est surjective.
- (3) Si f est injective, alors Ker $f = \emptyset$.
- (4) Si *f* est injective, alors *f* est surjective.
- (5) Si $x \in E$ et f(x) = 0 alors f = 0 ou x = 0.

On considère maintenant un espace vectoriel E de dimension finie et deux applications linéaires $f: E \to E$ et $g: E \to E$.

- (6) Si $f^2 = 0$ alors f = 0.
- (7) Si $f \circ g = 0$ alors f = 0 ou g = 0.
- (8) Si $f \circ g = 0$ alors g n'est pas injective.
- (9) Si Im g = Ker f, alors $f \circ g = 0$.
- (10) Les sous-espaces $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont des sous-espaces supplémentaires de E.

On considère E un \mathbb{K} -espace vectoriel de dimension finie n.

- (11) Si F, G et H sont des sous-espaces vectoriels de E tels que $F \oplus G = E$ et $F \oplus H = E$, alors G = H.
- (12) Si $(e_1, ..., e_n)$ et $(u_1, ..., u_n)$ sont deux bases de E, alors $(u_1, e_2, ..., e_n)$ est une base de E.
- (13) Si $e_1, ..., e_n$ sont des vecteurs de E et si de plus $e_2 \notin \text{Vect}(e_1)$, $e_3 \notin \text{Vect}(e_2)$, etc. $e_n \notin \text{Vect}(e_{n-1})$, alors $(e_1, ..., e_n)$ est une base de E.
- (14) Si $(e_1,...,e_n)$ et $(u_1,...,u_n)$ sont deux bases de E, alors il existe $i \in [1,n]$ tel que la famille $(u_i,e_2,...,e_n)$ est une base de E.
- (15) Si $(e_1,...,e_p)$ est une famille libre de E et $(u_1,...,u_q)$ est une famille génératrice de E, alors $p \le q$.
- (16) Si $(e_1, ..., e_n)$ est une base de E et $n \ge 3$, alors $\text{Vect}(e_1) \oplus \text{Vect}(e_2) \oplus \text{Vect}(e_3, ..., e_n) = E$.

On considère toujours $f: E \rightarrow E$ et $g: E \rightarrow E$ linéaires.

- (17) Si f n'est pas injective, alors il existe une base \mathcal{B} de E telle que la première colonne de la matrice de f dans \mathcal{B} est nulle.
- (18) Si F, G, H sont trois sous-espaces vectoriels de E tels que dim F + dim G + dim H = dim E et $F \cap G = F \cap H = G \cap H = \{0\}$, alors $F \oplus G \oplus H = E$.
- (19) Si F et G sont deux sous-espaces vectoriels de E tels que dim F + dim G = dim E et F + G = E, alors $F \oplus G = E$.
- (20) Si f est un automorphisme et s'il existe \mathcal{B} base de E telle que $\mathrm{Mat}_{\mathcal{B}}(f) = \mathrm{Mat}_{\mathcal{B}}(g)$, alors g est un automorphisme.
- (21) Si f est nilpotente et s'il existe \mathcal{B} base de E telle que $\mathrm{Mat}_{\mathcal{B}}(f) = \mathrm{Mat}_{\mathcal{B}}(g)$, alors g est nilpotente.
- (22) Si $\mathscr{B} = (e_1, ..., e_n)$ est une base de E telle que $\mathrm{Mat}_{\mathscr{B}}(f)$ est diagonale, alors pour tout $i \in [1, n]$, il existe $\lambda \in \mathbb{K}$ tel que $e_i \in \mathrm{Ker}(f \lambda \mathrm{id})$.
- (23) Si $f^2 = f$, alors $Ker(2f) \oplus Im f = E$.
- (24) Si f est un projecteur, alors -f est également un projecteur.
- (25) Si f est un projecteur, alors id f est un projecteur.

VI. Formes linéaires et hyperplans

- (26) Si f est un projecteur, alors id + f est un projecteur.
- (27) Si f est une symétrie, alors f est un automorphisme.
- (28) Si f est une symétrie, alors $\frac{f+\mathrm{id}}{2}$ est un projecteur. (29) Si F est un sous-espace de E stable par f, alors pour tout $x \in F$, f(x) = x.
- (30) Si F et G sont deux sous-espaces supplémentaires de E et F est stable par f, alors Gest stable par f.