Compléments sur la réduction et applications

- I. Décomposition en somme de projecteurs
- II. Quelques endomorphismes/matrices particuliersIllustrations du cours

Exercice 1 Applications de la réduction.

• Suites récurrentes linéaires. On considère une suite $(u_n)_{n\geq 0}$ telle que :

$$\forall n \in \mathbb{N}, \ u_{n+3} = 2u_{n+2} + u_{n+1} - 2u_n$$

(a) Pour $n \in \mathbb{N}$, on note $V_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}$. Déterminer une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que :

$$\forall n \in \mathbb{N}, \ V_{n+1} = AV_n$$

- (b) Déterminer les racines $\lambda_1, \lambda_2, \lambda_3$ de χ_A .
- (c) Démontrer que A est diagonalisable. En déduire qu'il existe $a,b,c\in\mathbb{R}$ tels que :

$$\forall n \in \mathbb{N}, u_n = a\lambda_1^n + b\lambda_2^n + c\lambda_3^n$$

On peut alors déterminer a, b, c à partir de certains termes connus de la suite (u_n) .

Les autres applications usuelles (étudiées par ailleurs) de la réduction d'une matrice A sont :

- Recherche de sous-espaces stables.
- Expliciter les puissances de A.
- Résoudre l'équation $M^2 = A$.
- **Déterminer le commutant de** A (l'ensemble des matrices M telles que AM = MA.).
- Résoudre un système d'équations différentielles associé à A.

En pratique

▶ Étudier rapidement la diagonalisabilité de $A \in \mathcal{M}_3(\mathbb{K})$

On considère $A \in \mathcal{M}_n(\mathbb{K})$, on travaille sur \mathbb{K} . On déterminer χ_A et on le factorise sur \mathbb{K} . On sait que χ_A est de degré 3 et unitaire.

- Si χ_A n'est pas scindé sur \mathbb{K} , alors A n'est pas diagonalisable.
- Si $\chi_A = (X \alpha)(X \beta)(X \gamma)$ avec $\alpha, \beta, \gamma \in \mathbb{K}$ distincts, alors A possède 3 valeurs propres distinctes donc est diagonalisable.
- Si $\chi_A = (X \alpha)^3$ avec $\alpha \in \mathbb{K}$, alors Sp(A) = { α } donc A est diagonalisable si, et seulement si, $A = \alpha I_3$.
- Si $\chi_A = (X \alpha)^2 (X \beta)$ avec $\alpha, \beta \in \mathbb{K}$ distincts, alors :

A diagonalisable
$$\iff$$
 dim $E_{\alpha}(A) = 2$
 \iff rg $(A - \alpha I_3) = 1$

▶ Quelques méthodes pour obtenir des éléments propres

On considère $A \in \mathcal{M}_n(\mathbb{K})$.

• Si la somme des coefficients sur chaque ligne de *A* est constante égale à *s*, alors :

$$A \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = s \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \neq 0$$

donc *s* est valeur propre de *A* et $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in E_s(A)$.

• Si $\operatorname{rg} A = r < n$, alors $\dim \operatorname{Ker} A = n - r < r \operatorname{donc} 0 \in \operatorname{Sp}(A)$, $\dim E_0(A) = n - r$ et 0 est racine de χ_A de multiplicité au moins n - r. Autrement dit χ_A est de la forme :

$$\chi_A(X) = X^{n-r}Q(X)$$

avec *Q* un polynôme de degré *r* et unitaire.

• Si on dispose de $\lambda_1, \ldots, \lambda_k$ valeurs propres de A de multiplicités (au moins égales à) m_1, \ldots, m_k et si $m_1 + \cdots + m_k = n - 1$, alors la valeur propre manquante λ s'obtient avec :

$$\lambda + m_1 \lambda_1 + \cdots + m_k \lambda_k = \operatorname{tr}(A)$$

• Pour faire des essais pour trouver des vecteurs propres et des valeurs propres de *A*, on peut se rappeler que le produit

$$A\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

est la combinaison linéaire $\alpha_1 C_1 + \cdots + \alpha_n C_n$ avec C_1, \ldots, C_n les colonnes de A.