

DM 4 pour le Vendredi 13 décembre 2024

Pensez à laisser une marge sur les copies, au minimum 5 cm. Dans ce problème, on désigne par E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 2$.

On dira qu'un endomorphisme f de E est cyclique s'il existe un vecteur x_0 de E tel que :

$$E = \operatorname{Vect}\left(f^{k}(x_{0}) \mid k \in \mathbb{N}\right) \quad ou \ encore \quad E = \operatorname{Vect}\left(x_{0}, f(x_{0}), f^{2}(x_{0}), f^{3}(x_{0}), \ldots\right)$$

Dans les parties 1 et 2, on donne quelques exemples d'endomorphismes cycliques. Dans la partie 3, on procède à une étude plus générale des endomorphismes cycliques.

Partie 1 Exemples d'endomorphismes cycliques en dimension 3

Dans cette partie seulement, l'espace E est de dimension 3 et rapporté à une base (e_1, e_2, e_3) . On considère l'endomorphisme a dont la matrice dans la base (e_1, e_2, e_3) est :

$$A = \begin{pmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{pmatrix}$$

- **1.** Exprimer $a(e_1)$ et $a^2(e_1)$ dans la base (e_1, e_2, e_3) et en déduire que a est cyclique.
- **2.** Déterminer les valeurs propres de l'endomorphisme *a*.
- **3.** Pour chacune des trois valeurs propres possibles, déterminer un vecteur propre dont la troisième composante est égale à 1. En déduire une matrice inversible P telle que $P^{-1}AP$ soit une matrice diagonale qu'on explicitera.

On considère l'endomorphisme b dont la matrice dans la base (e_1, e_2, e_3) est :

$$B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

- **4.** Exprimer $b(e_1)$ et $b^2(e_1)$ dans la base (e_1, e_2, e_3) et en déduire que b est cyclique.
- **5.** Déterminer les valeurs propres de l'endomorphisme *b*.
- **6.** Étudier si l'endomorphisme *b* est ou non diagonalisable.

Partie 2 Un exemple d'endomorphisme cyclique en dimension n

Dans cette partie, on note c un endomorphisme de E admettant n valeurs propres distinctes $\lambda_1, ..., \lambda_n$ et $x_1, ..., x_n$ n vecteurs propres associés à ces n valeurs propres $\lambda_1, ..., \lambda_n$ et on pose alors $x_0 = x_1 + \cdots + x_n$.

- 7. Exprimer $c(x_1 + \cdots + x_n)$, $c^2(x_1 + \cdots + x_n)$, ..., $c^n(x_1 + \cdots + x_n)$ en fonction de x_1, \ldots, x_n et $\lambda_1, \ldots, \lambda_n$.
- **8.** Établir que la famille $(x_0, c(x_0), \dots, c^{n-1}(x_0))$ est une base de E.
- **9.** En déduire que l'endomorphisme c est cyclique.

Partie 3

Dans cette partie, on note f un endomorphisme cyclique de l'espace vectoriel E (dim E = n), autrement dit un endomorphisme f pour lequel existe un vecteur x_0 de E tel que :

$$E = \text{Vect}\left(f^k(x_0) \mid k \in \mathbb{N}\right) \quad ou \; encore \quad E = \text{Vect}\left(x_0, f(x_0), f^2(x_0), f^3(x_0), \ldots\right)$$

Une base adaptée de E.

On désigne par m le plus grand nombre entier naturel tel que :

$$(x_0, f(x_0), f^2(x_0), \dots, f^{m-1}(x_0))$$
 est libre et $(x_0, f(x_0), f^2(x_0), \dots, f^m(x_0))$ est liée.

- **10.** Justifier l'existence d'un tel nombre entier naturel m.
- 11. Montrer, par récurrence sur k, que $f^{m+k}(x_0) \in \text{Vect}(x_0, f(x_0), \dots, f^{m-1}(x_0))$.
- **12.** En déduire que la famille $(x_0, f(x_0), f^2(x_0), \dots, f^{m-1}(x_0))$ est une base de E, puis que m = n. Dans toute la suite de ce problème, on convient de poser :

$$f^{n}(x_{0}) = p_{n-1}f^{n-1}(x_{0}) + \cdots + p_{1}f(x_{0}) + p_{0}x_{0}$$

et on désigne alors par P le polynôme de $\mathbb{K}[X]$ défini par $P(X) = X^n - p_{n-1}X^{n-1} - \cdots - p_1X - p_0$. Matrice et polynôme annulateur de f.

- **13.** Écrire la matrice *M* de *f* dans la base $(x_0, f(x_0), f^2(x_0), ..., f^{n-1}(x_0))$.
- **14.** Montrer que la famille de n endomorphismes (id, $f, f^2, ..., f^{n-1}$) est libre.
- **15.** En déduire qu'il n'existe aucun polynôme Q non nul de degré strictement inférieur à n tel que Q(f) = 0.
- **16.** Déterminer l'image par l'endomorphisme $P(f) = f^n p_{n-1}f^{n-1} \cdots p_1f p_0$ id des vecteurs de la base $(x_0, f(x_0), f^2(x_0), \dots, f^{n-1}(x_0))$, puis en déduire que P(f) = 0.

Caractérisation des endomorphismes cycliques diagonalisables.

- 17. On considère une valeur propre λ de f et un vecteur propre associé x. Calculer $f^k(x)$ pour $k \in \mathbb{N}$ et en déduire que $P(\lambda) = 0$.
- **18.** On considère une valeur propre λ de f. Déterminer le rang de l'endomorphisme $f \lambda$ id à l'aide de sa matrice, puis en déduire la dimension du sous-espace propre associé à λ .
- 19. Établir que l'endomorphisme cyclique f est diagonalisable si et seulement s'il possède n valeurs propres distinctes.

Étude du commutant de f lorsque f est cyclique.

- **20.** Montrer que le commutant $C(f) = \{g \in \mathcal{L}(E) \mid g \circ f = f \circ g\}$ est un sous-espace vectoriel de $\mathcal{L}(E)$ et qu'il est stable par composition.
- **21.** Soient deux endomorphismes u et v appartenant à C(f). Montrer que, si $u(x_0) = v(x_0)$, alors u = v.
- **22.** Soit g un endomorphisme appartenant à C(f) et pour lequel on pose :

$$g(x_0) = a_{n-1}f^{n-1}(x_0) + \dots + a_1f(x_0) + a_0x_0$$

Montrer que $g = a_{n-1}f^{n-1} + \dots + a_1f + a_0$ id.

23. En déduire que le commutant C(f) est de dimension n et démontrer qu'il admet pour base $(id, f, f^2, ..., f^{n-1})$.

Correction DM 4 - Épreuve commune EPITA 2002

Partie 1 Exemples d'endomorphismes cycliques en dimension 3

1. On a par définition:

$$a(e_1) = e_2$$
 et $a^2(e_1) = a(e_2) = e_3$

Ainsi:

$$E = \text{Vect}(e_1, e_2, e_3) = \text{Vect}(e_1, a(e_1), a^2(e_1)) \subset \text{Vect}\left(a^k(e_1) \mid k \in \mathbb{N}\right)$$

Comme l'inclusion réciproque est évidente, on a $E = \text{Vect}(a^k(e_1) \mid k \in \mathbb{N})$ donc a est cyclique.

2. On détermine le polynôme caractéristique de *a* :

$$\forall x \in \mathbb{K}, \ \chi_a(x) = \chi_A(x) = (-1)^3 \det(A - xI_3) = - \begin{vmatrix} -x & 0 & 6 \\ 1 & -x & -11 \\ 0 & 1 & 6 - x \end{vmatrix} = - \begin{vmatrix} 1 - x & 1 - x & 1 - x \\ 1 & -x & -11 \\ 0 & 1 & 6 - x \end{vmatrix}_{L_1 \leftarrow L_1 + L_2 + L_3}$$

$$= (x - 1) \begin{vmatrix} 1 & 1 & 1 \\ 1 & -x & -11 \\ 0 & 1 & 6 - x \end{vmatrix}$$

$$= (x - 1)(x - 2)(x - 3) \quad \text{(après calcul)}$$

On a donc $Sp(a) = \{1,2,3\}$. **Remarque :** si on ne fait pas assez d'opérations pour obtenir une forme factorisée, on pourra tout de même reconnaitre que 1 est une racine évidente du polynôme caractéristique.

3. On obtient avec la méthode usuelle:

$$E_1(A)\operatorname{Vect}\begin{pmatrix} 6\\-5\\-5 \end{pmatrix}$$
, $E_2(A) = \operatorname{Vect}\begin{pmatrix} 3\\-4\\-4 \end{pmatrix}$, $E_3(A) = \operatorname{Vect}\begin{pmatrix} 2\\-3\\-3 \end{pmatrix}$

On en déduit que la matrice

$$P = \begin{pmatrix} 6 & 3 & 2 \\ -5 & -4 & -3 \\ 1 & 1 & 1 \end{pmatrix}$$

est inversible et $P^{-1}AP = D$ avec D = diag(1, 2, 3).

4. On a par définition :

$$b(e_1) = e_2$$
 et $b^2(e_1) = b(e_2) = e_3$

Ainsi:

$$E = \text{Vect}(e_1, e_2, e_3) = \text{Vect}(e_1, b(e_1), b^2(e_1)) \subset \text{Vect}\left(b^k(e_1) \mid k \in \mathbb{N}\right)$$

Comme l'inclusion réciproque est évidente, on a $E = \text{Vect}(b^k(e_1) \mid k \in \mathbb{N})$ donc b est cyclique.

5. On utilise le polynôme carctéristique :

$$\forall x \in \mathbb{K}, \ \chi_b(x) = - \begin{vmatrix} -x & 0 & 1 \\ 1 & -x & 1 \\ 0 & 1 & -1 - x \end{vmatrix} = - \begin{vmatrix} 1 - x & 1 - x & 1 - x \\ 1 & -x & 1 \\ 0 & 1 & -1 - x \end{vmatrix}_{L_1 \leftarrow L_1 + L_2 + L_3}$$

$$= (x - 1) \begin{vmatrix} 1 & 1 & 1 \\ 1 & -x & 1 \\ 0 & 1 & -1 - x \end{vmatrix}_{L_1 \leftarrow L_1 + L_2 + L_3}$$

$$= (x - 1)(x + 1)^2 \quad \text{(après calcul)}$$

On a donc $Sp(b) = \{1, -1\}.$

6. On a dim $E_1(b) = 1$ car 1 est racine simple de χ_b et $1 \le \dim E_{-1}(b) \le 2$ car -1 est racine double de χ_b . On a :

$$B + I_2 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Cette matrice n'est pas de rang 1 car ses deux premières colonnes ne sont pas proportionnelles. D'après le théorème du rang, on a donc $\dim E_{-1}(b) \neq 2$ donc $\dim E_{1}(b) + \dim E_{-1}(b) \neq 3 = \dim E$ donc b n'est pas diagonalisable.

Partie 2 Un exemple d'endomorphisme cyclique en dimension n

7. Soit $k \in \mathbb{N}$. Pour $i \in [1, n]$, x_i est un vecteur propre pour c associé à la valeur propre λ_i donc:

$$c^k(x_i) = \lambda_i^k x_i$$

et ainsi:

$$c^{k}(x_{1} + \dots + x_{n}) = c^{k}(x_{1}) + \dots + c^{k}(x_{n}) = \lambda_{1}^{k}x_{1} + \dots + \lambda_{n}^{k}x_{n}$$

On a donc:

$$\begin{cases} c(x_1 + \dots + x_n) = \lambda_1 x_1 + \dots + \lambda_n x_n \\ c^2(x_1 + \dots + x_n) = \lambda_1^2 x_1 + \dots + \lambda_n^2 x_n \\ \vdots \\ c^n(x_1 + \dots + x_n) = \lambda_1^n x_1 + \dots + \lambda_n^n x_n \end{cases}$$

8. Comme c admet n valeurs propres distinctes et $n = \dim E$, c est diagonalisable et la famille $\mathscr{B} = (x_1, \ldots, x_n)$ est alors une base de E constituée de vecteurs propres pour c. On pose $\mathscr{U} = (x_0, c(x_0), \ldots, c^{n-1}(x_0))$, on a :

$$\det_{\mathscr{B}}(\mathscr{U}) = \begin{vmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{n-1} \\ 1 & \lambda_3 & \lambda_3^2 & \cdots & \lambda_3^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \lambda_n & \lambda_n^2 & \cdots & \lambda_n^{n-1} \end{vmatrix}$$

C'est le déterminant de Vandermonde associé aux scalaires $\lambda_1, ..., \lambda_n$. Comme ils sont deux à deux distincts, ce déterminant est non nul donc \mathcal{U} est une base de E.

9. D'après ce qui précède :

$$E = \text{Vect}(x_0, c(x_0), \dots, c^{n-1}(x_0)) \subset \text{Vect}\left(c^k(x_0) \mid k \in \mathbb{N}\right)$$

Comme l'inclusion réciproque est évidente, on a $E = \text{Vect}(c^k(x_0) \mid k \in \mathbb{N})$ donc c est cyclique.

Partie 3

10. On définit:

$$A = \{m \in \mathbb{N} \mid (x_0, f(x_0), \dots, f^{m-1}(x_0)) \text{ est libre}\}$$

Dans la définition de A, le cas m=0 correspond à la famille vide qui est considérée comme libre. En particulier, $0 \in A$ donc A est non vide. On peut préférer considérer le cas m=1 qui correspond à la famille (x_0) libre également puisque nécessairement $x_0 \neq 0$ (comme $E \neq \{0\}$ et $E = \text{Vect}(x_0, f(x_0), \ldots)$

on a nécessairement $x_0 \neq 0$). Par définition, A est une partie de \mathbb{N} . De plus, le cardinal de toute famille libre de E est majoré par n, donc A est majoré par n. Comme A est une partie de \mathbb{N} non vide et majorée, elle admet un plus grand élément. Si on le note m, on a alors $m \in A$ donc :

$$(x_0, f(x_0), \dots, f^{m-1}(x_0))$$
 est libre

et $m+1 \notin A$ donc:

$$(x_0, f(x_0), ..., f^m(x_0))$$
 est liée

11. On considère pour $k \in \mathbb{N}$ l'hypothèse de récurrence :

$$\mathcal{H}(k): f^{m+k}(x_0) \in \text{Vect}(x_0, f(x_0), \dots, f^{m-1}(x_0))$$

Pour k=0, on sait que $(x_0,\ldots,f^{m-1}(x_0))$ est libre et $(x_0,\ldots,f^{m-1}(x_0),f^m(x_0))$ est liée. Par conséquent, $f^m(x_0)\in \mathrm{Vect}(x_0,f(x_0),\ldots,f^{m-1}(x_0))$. Ainsi, $\mathcal{H}(0)$ est vraie. Soit $k\in\mathbb{N}$, on suppose que $\mathcal{H}(k)$ est vraie. Il existe alors $\alpha_0,\ldots,\alpha_{m-1}\in\mathbb{K}$ tels que :

$$f^{m+k}(x_0) = \alpha_0 x_0 + \dots + \alpha_{m-1} f^{m-1}(x_0)$$

En composant par f:

$$f^{m+k+1}(x_0) = f(f^{m+k}(x_0)) = f(\alpha_0 x_0 + \dots + \alpha_{m-1} f^{m-1}(x_0)) = \alpha_0 f(x_0) + \dots + \alpha_{m-1} f^m(x_0)$$
$$= \alpha_0 f(x_0) + \dots + \alpha_{m-2} f^{m-1}(x_0) + \alpha_{m-1} f^m(x_0)$$

On a:

$$\alpha_0 f(x_0) + \dots + \alpha_{m-2} f^{m-1}(x_0) \in \text{Vect}(x_0, f(x_0), \dots, f^{m-1}(x_0))$$

et on a vu que:

$$f^{m}(x_0) \in \text{Vect}(x_0, f(x_0), \dots, f^{m-1}(x_0))$$

On a donc $f^{m+k+1}(x_0) \in \text{Vect}(x_0, \dots, f^{m-1}(x_0))$ donc $\mathcal{H}(m+k+1)$ est vraie. Par récurrence, pour tout $k \in \mathbb{N}$, $f^{m+k}(x_0) \in \text{Vect}(x_0, \dots, f^{m-1}(x_0))$.

12. D'après ce qui précéde, pour tout $k \in \mathbb{N}$ on a :

$$f^k(x_0) \in \text{Vect}(x_0, ..., f^{m-1}(x_0))$$

On en déduit que :

$$E = \operatorname{Vect}(f^k(x_0) \mid k \in \mathbb{N}) \subset \operatorname{Vect}(x_0, \dots, f^{m-1}(x_0))$$

L'inclusion réciproque est évidente, donc $E = \text{Vect}(x_0, \dots, f^{m-1}(x_0))$. La famille $(x_0, \dots, f^{m-1}(x_0))$ est donc génératrice de E. Elle est de plus libre donc c'est une base de E et par conséquent n = m.

13.

$$M = \begin{pmatrix} 0 & 0 & \cdots & 0 & p_0 \\ 1 & 0 & \cdots & 0 & p_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & p_{n-1} \end{pmatrix}$$

14. On considère une combinaison linéaire nulle :

$$\alpha_0 \operatorname{id} + \alpha_1 f + \dots + \alpha_{n-1} f^{n-1} = 0$$

avec $\alpha_0, ..., \alpha_{n-1} \in \mathbb{K}$. On applique en x_0 , on obtient :

$$\alpha_0 x_0 + \alpha_1 f(x_0) + \dots + \alpha_{n-1} f^{n-1}(x_0) = 0$$

Or $(x_0, f(x_0), ..., f^{n-1}(x_0))$ est libre donc $\alpha_0 = ... = \alpha_{m-1} = 0$ donc (id, $f, ..., f^{n-1}$) est libre.

15. Supposons que $Q \in \mathbb{K}_{n-1}[X]$ est annulateur de f. On note $Q = \alpha_0 + \alpha_1 X + \cdots + \alpha_{n-1} X^{n-1}$. On a alors :

$$Q(f) = \alpha_0 \operatorname{id} + \alpha_1 f + \dots + \alpha_{n-1} f^{n-1} = 0$$

D'après la question précédente, $\alpha_0 = \dots = \alpha_{n-1} = 0$ donc Q = 0. Par conséquent, il n'existe pas de polynôme $Q \in \mathbb{K}_{n-1}[X]$ non nul et annulateur de f.

16. Par définition, on a:

$$P(f)(x_0) = f^n(x_0) - (p_0x_0 + p_1f(x_0) + \dots + p_{n-1}f^{n-1}(x_0)) = 0$$

Considérons $k \in \mathbb{N}$, on a :

$$P(f)(f^k(x_0)) = (PX^k)(f)(x_0) = f^k(P(f)(x_0)) = f^k(0) = 0$$

L'endomorphisme P(f) est nul sur une base de E donc P(f) = 0.

17. On sait que $f^k(x) = \lambda^k x$, on a alors :

$$P(f)(x) = 0 = f^n(x) - (p_0x + p_1f(x) + \dots + p_{n-1}f^{n-1}(x)) = \lambda^n x - (p_0 + p_1\lambda + \dots + p_{n-1}\lambda^{n-1})(x)$$

$$P(f)(x) = P(\lambda)x$$

Par hypothèse, $x \neq 0$ donc $P(\lambda) = 0$.

18. On a $\operatorname{rg}(f - \lambda \operatorname{id}) = \operatorname{rg}(M - \lambda I_n)$ avec :

$$M - \lambda \mathbf{I}_n = \begin{pmatrix} -\lambda & 0 & \cdots & 0 & p_0 \\ 1 & -\lambda & \ddots & \vdots & p_1 \\ 0 & 1 & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & -\lambda & \vdots \\ 0 & \cdots & 0 & 1 & p_{n-1} - \lambda \end{pmatrix}$$

On sait déjà que $\operatorname{rg}(M-\lambda I_n) < n$ car λ est valeur propre de f. Notons c_1, \ldots, c_n les colonnes de $M-\lambda I_n$. On considère une combinaison linéaire nulle des n-1 premières colonnes :

$$x_1c_1 + \cdots + x_{n-1}c_{n-1} = 0$$

avec $x_1, ..., x_{n-1} \in \mathbb{K}$. On obtient alors le système :

$$\begin{cases}
-\lambda x_1 = 0 \\
x_1 - \lambda x_2 = 0 \\
x_2 - \lambda x_3 = 0
\end{cases}$$

$$\vdots$$

$$x_{n-2} - \lambda x_{n-1} = 0$$

$$x_{n-1} = 0$$

qui se résout à partir de la dernière ligne en remontant et donne $x_{n-1} = x_{n-2} = \cdots = x_1 = 0$. Les n-1 premières colonnes de $M-\lambda I_n$ constituent une famille libre donc $\operatorname{rg}(M-\lambda I_n) \ge n-1$ et ainsi $\operatorname{rg}(f=-\lambda\operatorname{id}) = \operatorname{rg}(M-\lambda I_n) = n-1$ puis avec le théorème du rang $\operatorname{dim} E_{\lambda}(f) = 1$.

19. On suppose f cyclique et diagonalisable. Notons $\lambda_1, \dots, \lambda_p$ les valeurs propres distinctes de f, on a par hypothèse :

$$\dim E_{\lambda_1}(f) + \cdots + \dim E_{\lambda_n}(f) = \dim E = n$$

et d'après la question précédente, chaque sous-espace propre est de dimension 1 donc :

$$\dim E_{\lambda_1}(f) + \cdots + \dim E_{\lambda_n}(f) = p$$

On a donc p = n et ainsi f possède n valeurs propres distinctes. D'après le cours, la réciproque est vraie. D'où l'équivalence : l'endomorphime cyclique f est diagonalisable ssi il possède n valeurs propres distinctes.

20. On a par définition $C(f) \subset \mathcal{L}(E)$ et comme id $\in C(f)$, C(f) est non vide. Pour $u, v \in C(f)$ et $\lambda \in \mathbb{K}$, on a :

$$(\lambda u + v) \circ f = \lambda u \circ f + v \circ f = \lambda f \circ u + f \circ v = f \circ (\lambda u + v)$$

donc $\lambda u + v \in C(f)$ et ainsi C(f) est un sous-espace vectoriel de $\mathcal{L}(E)$. De plus :

$$(u \circ v) \circ f = u \circ (v \circ f) = u \circ (f \circ v) = (u \circ f) \circ v = (f \circ u) \circ v = f \circ (u \circ v)$$

donc $u \circ v \in C(f)$ donc C(f) est stable par composition.

21. Avec les hypothèses faites, on a pour tout $k \in \mathbb{N}$:

$$u(f^k(x_0)) = u \circ f^k(x_0) = f^k \circ u(x_0) = f^k(u(x_0)) = f^k(v(x_0)) = f^k \circ v(x_0) = v(f^k(x_0))$$

Les endomorphismes u et v coïncident sur une base de E, par conséquent u = v.

- 22. On considère l'endomorphisme $h = a_{n-1}f^{n-1} + \cdots + a_1f + a_0$ id. Comme h est un polynôme en $f, h \in C(f)$. On a par définition $g(x_0) = h(h_0)$ donc d'après la question précédente, g = h.
- 23. Posons $G = \text{Vect}(\text{id}, f, ..., f^{n-1})$. Les éléments de G sont des polynômes en f donc $G \subset C(f)$. D'après la question précédente, tout $g \in C(f)$ est un élément de G donc $C(f) \subset G$. On a donc C(f) = G. La famille (id, $f, ..., f^{n-1}$) est alors génératrice de C(f) et on sait de plus qu'elle est libre (question 14), c'est donc une base de C(f) et ainsi dim C(f) = n.